本文主要是介绍bevfusion 学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
tensorrt ros部署:
也依赖ros2 c++
ros2安装指导:
相机标定工具源码:
官方github,部分模型开源
tensorrt ros部署:
https://github.com/linClubs/BEVFusion-ROS-TensorRT
也依赖ros2 c++
GitHub - newintelligence4/BEVfusion_preprocess: Multiple Lidar preprocessor for BEVfusion
ros2安装指导:
ROS2学习笔记(一)——Win11安装及使用 - 知乎
安装手册:
Windows (binary) — ROS 2 Documentation: Humble documentation
下载地址:Releases · ros2/ros2 · GitHub
相机标定工具源码:
GitHub - linClubs/Calibration-Is-All-You-Need: calibration is you need including camera、imu、camera2camera、 camera2lidar、imu2camera、imu2lidar.
官方github,部分模型开源
https://github.com/ADLab-AutoDrive/BEVFusion
没有开源centerpoint版,
Main Results
nuScenes detection test
Model | Head | 3DBackbone | 2DBackbone | mAP | NDS | Link |
---|---|---|---|---|---|---|
BEVFusion | TransFusion-L | VoxelNet | Dual-Swin-T | 69.2 | 71.8 | Detection |
BEVFusion* | TransFusion-L | VoxelNet | Dual-Swin-T | 71.3 | 73.3 | Leadboard |
nuScenes detection validation
Model | Head | 3DBackbone | 2DBackbone | mAP | NDS | Model |
---|---|---|---|---|---|---|
BEVFusion | PointPillars | - | Dual-Swin-T | 22.9 | 31.1 | Model |
BEVFusion | PointPillars | PointPillars | - | 35.1 | 49.8 | Model |
BEVFusion | PointPillars | PointPillars | Dual-Swin-T | 53.5 | 60.4 | Model |
BEVFusion | CenterPoint | - | Dual-Swin-T | 27.1 | 32.1 | - |
BEVFusion | CenterPoint | VoxelNet | - | 57.1 | 65.4 | - |
BEVFusion | CenterPoint | VoxelNet | Dual-Swin-T | 64.2 | 68.0 | - |
BEVFusion | TransFusion-L | - | Dual-Swin-T | 22.7 | 26.1 | - |
BEVFusion | TransFusion-L | VoxelNet | - | 64.9 | 69.9 | - |
BEVFusion | TransFusion-L | VoxelNet | Dual-Swin-T | 67.9 | 71.0 | - |
BEVFusion* | TransFusion-L | VoxelNet | Dual-Swin-T | 69.6 | 72.1 | Model |
GitHub - mit-han-lab/bevfusion: [ICRA'23] BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation
3D Object Detection (on nuScenes validation)
Model | Modality | mAP | NDS | Checkpoint |
---|---|---|---|---|
BEVFusion | C+L | 68.52 | 71.38 | Link |
Camera-Only Baseline | C | 35.56 | 41.21 | Link |
LiDAR-Only Baseline | L | 64.68 | 69.28 | Link |
Note: The camera-only object detection baseline is a variant of BEVDet-Tiny with a much heavier view transformer and other differences in hyperparameters. Thanks to our efficient BEV pooling operator, this model runs fast and has higher mAP than BEVDet-Tiny under the same input resolution. Please refer to BEVDet repo for the original BEVDet-Tiny implementation. The LiDAR-only baseline is TransFusion-L.
BEV Map Segmentation (on nuScenes validation)
Model | Modality | mIoU | Checkpoint |
---|---|---|---|
BEVFusion | C+L | 62.95 | Link |
Camera-Only Baseline | C | 57.09 | Link |
LiDAR-Only Baseline | L | 48.56 | Link |
这篇关于bevfusion 学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!