东北大学离散数学

2023-12-24 03:30
文章标签 离散数学 东北大学

本文主要是介绍东北大学离散数学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一章 命题逻辑

第一节 命题及命题的真值

第二节 逻辑连结词

第三节 命题逻辑中的命题符号化

第四节 命题公式及其真值表

第五节 命题公式的等价

第六节 重言式与重言蕴含式

第七节 析取范式与合取范式


第八节 主析取范式

第二篇 集合论

第一节 基本概念与集合的表示方法

第二节 集合间的关系


第三节 特殊集合


第四节 集合的运算

 

    

第五节 包含排斥定理

第三章 集合论初步

第四章 二元关系

第一节 序偶与集合的笛卡尔积

第二节 关系及其表示方法

第三节 关系的性质

第四节 关系的复合运算

第五节 关系的求逆运算

第六节 关系的闭包运算

第五章 函数

第一节 函数的基本概念

第二节 函数的复合

第三节 函数的求逆运算

第四节 集合的等式

第六章  组合数学初步

第一节 加法原理与乘法原理

第二节 排列与组合

  

第三节 二项式定理与组合恒等式

第四节 多项式定理

第七章 代数系统

第一节 二元运算及其性质

第二节 二元运算中的特殊元

第三节 代数系统的同态与同构


第四节 代数系统同构的性质

第五节 半群和独异点

第六节 群的定义及性质

第七节 子群及其证明

这篇关于东北大学离散数学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/530411

相关文章

离散数学------关系理论

一、序偶和笛卡尔积 序偶 两个序偶如果相等,那么他们相对应的第一第二元素分别相等 笛卡尔积 笛卡尔积是集合之间的一种运算,运算的结果是个序偶,第一元素来自前面的集合,第二元素来自后面的集合。  两集合进行笛卡尔积运算后集合里的元素个数=两集合元素个数的乘积 二、关系 定义 每种关系都可以用序偶表示,关系是两集合笛卡尔积的子集。 表示方式 题型一:求两

离散数学中的逻辑应用(2)

目录 引言 1. 逻辑在决策分析中的应用 2. 逻辑在算法设计中的应用 3. 逻辑在数学证明中的应用 4. 逻辑在编程中的应用 5. 逻辑应用工具 6. 总结 引言 在上一篇文章中,我们介绍了逻辑的基本概念和运算。本篇文章将深入探讨如何将逻辑应用于实际问题中,如问题求解、决策分析和数学证明。通过具体的例子和推理步骤,你将能够理解逻辑在离散数学及其他领域中的广泛应用。

离散数学中的逻辑基础(1)

目录 引言 1. 命题及其逻辑运算 2. 逻辑等价与范式 3. 逻辑推理规则 4. 逻辑问题练习 5. 总结 引言 逻辑是离散数学的核心概念之一,它用于精确描述数学命题并分析其关系。逻辑不仅是数学证明的基础,也是计算机科学中算法设计和编程的基石。本篇文章将详细介绍逻辑学中的命题、逻辑运算和推理规则,帮助读者建立扎实的逻辑基础。 1. 命题及其逻辑运算 1.1 命题的定义

组合数学、圆排列、离散数学多重集合笔记

自用 如果能帮到您,那也值得高兴 知识点 离散数学经典题目 多重集合组合 补充容斥原理公式 隔板法题目 全排列题目:

离散数学-代数系统证明题归类

什么是独异点?  运算° 在B上封闭,运算° 可结合,且存在幺元。 学会合理套用题目公式+结合律       零元? 群中不可能有零元 几个结论要熟记: 1.当群的阶为1时,它的唯一元素视作幺元e 2.若群的阶大于1时,且同时存在幺元和零元的话,幺元不等于零元 纯个人理解: 因为零元和什么相乘,依旧是零元。 而零元又不等于幺元。 我们知道,一个

离散数学答疑 5

知识点:单侧连通,强连通,弱连通     前缀码:比如001和00101就不是。因为后者的前三位和前者的重复了  有向图的邻接矩阵求法:横着看 数据结构21-4分钟搞定邻接矩阵_哔哩哔哩_bilibili    可达矩阵是包含自反性的。可达矩阵是一个自反矩阵,这意味着对角线上的元素都是1,表示每个节点到自身是可达的。在图论中,可达矩阵用来描述有向图中所

离散数学---树

目录 1.基本概念及其相关运用 2.生成树 3.有向树 4.最优树 5.前缀码 1.基本概念及其相关运用 (1)无向树:连通而且没有回路的无向图就是无向树; 森林就是有多个连通分支,每个连通分支都是树的无连通的无向图; 树叶就是这个无向图里面的度数是1的节点,分支点就是度数大于等于2的节点,简单的讲就是没有其他的分支的顶点就叫做树叶,还可以从这个地方继续细分的顶点就叫

离散数学答疑 3

~A:A的补集 有时候空集是元素,有时候就是纯粹的空集 A-B的定义:   笛卡尔积:  求等价关系:先求划分再一一列举  不同划分:分几块。一块:两块:三块:分别计算  Ix是X上的恒等关系指包含:<a,a><b,b><c,c> Rc:逆矩阵 比如:<2,1>就变成了<1,2> 交:合取 并:析取 蓝色这里,是指把A补全了,让他变成一个等价关系的东西

破解凯撒密码(离散数学)

首先来看以下恺撒密码。 离散数学的一道作业题。 凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加密和解密。例如,如果密匙是把明文字母的位数向后移动三位,那么明文字母B就变成了密文的E,依次类推,X将变成A,Y变成B,Z变成C,由此可见,位数就是凯撒密码加密和解密的密钥。 题目如下: It is known t

C++实现离散数学中求合式表达式

在输入任何一个合式公式后,该段程序就会自动检测里面的命题变元,并要求为之输入真假值, 在输入完毕后就会得出该合式公式的真假值,运用的是递归的思想。 ----------YYC #include<iostream> #include<string> #include<map> using namespace std; /* *说明: *     用!表示 否定