MNN学习笔记(六):配置visual studio项目

2023-12-23 10:48

本文主要是介绍MNN学习笔记(六):配置visual studio项目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个其实很简单,原因是MNN项目组已经提供了编译好的库:

1.下载编译好的MNN库

下载地址为:https://github.com/alibaba/MNN/releases

下载两个文件:Source.code和MNN-WindowsX64-0.2.1.7.zip

2.在visual studio上进行配置

注意visual studio版本为2017,我习惯把这些库都跟opencv放一起,具体来讲就是:

首先,把从Source code中解压的include文件如图1所示,复制出来;

然后,在自己的opencv的include文件夹下面新建一个MNN子文件夹,将上面的头文件复制过去:

其次,将解压好的MNN-WindowsX64-0.2.1.7.zip文件中MNN.dll和MNN.lib放到opencv对应位置:

最后,跟配置opencv一样,新建一个项目,配置项目:

3.测试代码

总共三个文件:

第一个文件:mobilenetssd.h

#ifndef _MOBILENET_SSD_H_
#define _MOBILENET_SSD_H_#include <vector>#include "MNN/Interpreter.hpp"
#include "MNN/MNNDefine.h"
#include "MNN/Tensor.hpp"
#include "MNN/ImageProcess.hpp"#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"namespace mirror {
struct ObjectInfo {std::string name_;cv::Rect location_;float score_;
};class MobilenetSSD {
public:MobilenetSSD();~MobilenetSSD();int Init(const char* root_path);int Detect(const cv::Mat& img_src, std::vector<ObjectInfo>* objects);
private:uint8_t* GetImage(const cv::Mat& img_src) {uchar* data_ptr = new uchar[img_src.total() * 4];cv::Mat img_tmp(img_src.size(), CV_8UC4, data_ptr);cv::cvtColor(img_src, img_tmp, CV_BGR2RGBA, 4);return (uint8_t*)img_tmp.data;}private:bool initialized_;const cv::Size inputSize_ = { 300, 300 };std::vector<int> dims_ = { 1, 3, 300, 300 };const float meanVals_[3] = { 0.5f, 0.5f, 0.5f };const float normVals_[3] = { 0.007843f, 0.007843f, 0.007843f };std::vector<std::string> class_names = {"background", "aeroplane", "bicycle", "bird", "boat","bottle", "bus", "car", "cat", "chair","cow", "diningtable", "dog", "horse","motorbike", "person", "pottedplant","sheep", "sofa", "train", "tvmonitor"};std::shared_ptr<MNN::Interpreter> mobilenetssd_interpreter_;MNN::Session* mobilenetssd_sess_ = nullptr;MNN::Tensor* input_tensor_ = nullptr;std::shared_ptr<MNN::CV::ImageProcess> pretreat_data_ = nullptr;};}#endif // !_MOBILENET_SSD_H_

第二个文件:mobilenetssd.cpp

#include "mobilenetssd.h"
#include <iostream>
#include <string>#include "opencv2/imgproc.hpp"namespace mirror {MobilenetSSD::MobilenetSSD() {initialized_ = false;
}MobilenetSSD::~MobilenetSSD() {mobilenetssd_interpreter_->releaseModel();mobilenetssd_interpreter_->releaseSession(mobilenetssd_sess_);
}int MobilenetSSD::Init(const char * root_path) {std::cout << "start Init." << std::endl;std::string model_file = std::string(root_path) + "/mobilenetssd.mnn";mobilenetssd_interpreter_ = std::unique_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_file.c_str()));if (nullptr == mobilenetssd_interpreter_) {std::cout << "load model failed." << std::endl;return 10000;}MNN::ScheduleConfig schedule_config;schedule_config.type = MNN_FORWARD_CPU;schedule_config.numThread = 4;MNN::BackendConfig backend_config;backend_config.precision = MNN::BackendConfig::Precision_High;backend_config.power = MNN::BackendConfig::Power_High;schedule_config.backendConfig = &backend_config;mobilenetssd_sess_ = mobilenetssd_interpreter_->createSession(schedule_config);// image processerMNN::CV::Matrix trans;trans.setScale(1.0f, 1.0f);MNN::CV::ImageProcess::Config img_config;img_config.filterType = MNN::CV::BICUBIC;::memcpy(img_config.mean, meanVals_, sizeof(meanVals_));::memcpy(img_config.normal, normVals_, sizeof(normVals_));img_config.sourceFormat = MNN::CV::RGBA;img_config.destFormat = MNN::CV::RGB;pretreat_data_ = std::shared_ptr<MNN::CV::ImageProcess>(MNN::CV::ImageProcess::create(img_config));pretreat_data_->setMatrix(trans);std::string input_name = "data";input_tensor_ = mobilenetssd_interpreter_->getSessionInput(mobilenetssd_sess_, input_name.c_str());mobilenetssd_interpreter_->resizeTensor(input_tensor_, dims_);mobilenetssd_interpreter_->resizeSession(mobilenetssd_sess_);initialized_ = true;std::cout << "end Init." << std::endl;return 0;
}int MobilenetSSD::Detect(const cv::Mat & img_src, std::vector<ObjectInfo>* objects) {std::cout << "start detect." << std::endl;if (!initialized_) {std::cout << "model uninitialized." << std::endl;return 10000;}if (img_src.empty()) {std::cout << "input empty." << std::endl;return 10001;}int width = img_src.cols;int height = img_src.rows;// preprocesscv::Mat img_resized;cv::resize(img_src, img_resized, inputSize_);uint8_t* data_ptr = GetImage(img_resized);pretreat_data_->convert(data_ptr, inputSize_.width, inputSize_.height, 0, input_tensor_);mobilenetssd_interpreter_->runSession(mobilenetssd_sess_);std::string output_name = "detection_out";MNN::Tensor* output_tensor = mobilenetssd_interpreter_->getSessionOutput(mobilenetssd_sess_, output_name.c_str());// copy to hostMNN::Tensor output_host(output_tensor, output_tensor->getDimensionType());output_tensor->copyToHostTensor(&output_host);auto output_ptr = output_host.host<float>();for (int i = 0; i < output_host.height(); ++i) {int index = i * output_host.width();ObjectInfo object;object.name_ = class_names[int(output_ptr[index + 0])];object.score_ = output_ptr[index + 1];object.location_.x = output_ptr[index + 2] * width;object.location_.y = output_ptr[index + 3] * height;object.location_.width = output_ptr[index + 4] * width - object.location_.x;object.location_.height = output_ptr[index + 5] * height - object.location_.y;objects->push_back(object);}std::cout << "end detect." << std::endl;return 0;
}}

第三个文件:main.cpp

#include "mobilenetssd.h"
#include "opencv2/opencv.hpp"int main(int argc, char* argv[]){const char* img_path = "./data/images/test.jpg";cv::Mat img_src = cv::imread(img_path);mirror::MobilenetSSD* mobilenetssd = new mirror::MobilenetSSD();const char* root_path = "./data/models";mobilenetssd->Init(root_path);std::vector<mirror::ObjectInfo> objects;mobilenetssd->Detect(img_src, &objects);int num_objects = static_cast<int>(objects.size());for (int i = 0; i < num_objects; ++i) {std::cout << "location: " << objects[i].location_ << std::endl;cv::rectangle(img_src, objects[i].location_, cv::Scalar(255, 0, 255), 2);char text[256];sprintf_s(text, "%s %.1f%%", objects[i].name_.c_str(), objects[i].score_ * 100);int baseLine = 0;cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);cv::putText(img_src, text, cv::Point(objects[i].location_.x,objects[i].location_.y + label_size.height),cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));}cv::imwrite("./data/images/cat.jpg", img_src);cv::imshow("result", img_src);cv::waitKey(0);delete mobilenetssd;system("pause");return 0;
}

最后结果:

需要用到的模型和测试图片下载地址:https://download.csdn.net/download/sinat_31425585/12137855

打完收工!

这篇关于MNN学习笔记(六):配置visual studio项目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527761

相关文章

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

springboot项目打jar制作成镜像并指定配置文件位置方式

《springboot项目打jar制作成镜像并指定配置文件位置方式》:本文主要介绍springboot项目打jar制作成镜像并指定配置文件位置方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录一、上传jar到服务器二、编写dockerfile三、新建对应配置文件所存放的数据卷目录四、将配置文

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

怎么用idea创建一个SpringBoot项目

《怎么用idea创建一个SpringBoot项目》本文介绍了在IDEA中创建SpringBoot项目的步骤,包括环境准备(JDK1.8+、Maven3.2.5+)、使用SpringInitializr... 目录如何在idea中创建一个SpringBoot项目环境准备1.1打开IDEA,点击New新建一个项

Nginx 重写与重定向配置方法

《Nginx重写与重定向配置方法》Nginx重写与重定向区别:重写修改路径(客户端无感知),重定向跳转新URL(客户端感知),try_files检查文件/目录存在性,return301直接返回永久重... 目录一.try_files指令二.return指令三.rewrite指令区分重写与重定向重写: 请求