R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

本文主要是介绍R语言中使用ggplot2绘制散点图箱线图,附加显著性检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

散点图可以直观反映数据的分布,箱线图可以展示均值等关键统计量,二者结合能够清晰呈现数据蕴含的信息。

alt

本篇笔记主要内容:介绍R语言中绘制箱线图和散点图的方法,以及二者结合展示教程,添加差异比较显著性分析,绘制如上结果图。


加载R包与数据

library(ggpubr) 
library(patchwork) 
library(ggsci)
library(tidyverse)
# 使用R语言自带的iris数据集,并随机分成两组
data <- iris
data$Group <- NA
data$Group[sample(1:nrow(data),size = (nrow(data)/2))] <- "A"
data$Group[is.na(data$Group)] <- "B"

alt 在实际数据可视化过程中,输入数据格式也和上面类似,至少有两列,其中一列是分类,另一列是数值。

绘制箱线图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)

这里将Species设置为x轴,Sepal.Width设置为y轴,箱子内部填充颜色与Species映射。 alt

这段代码的作用是创建一个箱形图,显示不同物种(Species)的萼片宽度(Sepal.Width)分布,且不同物种的箱形用不同颜色表示,并且这些颜色半透明。

这种类型的图表通常用于展示和比较不同类别或组的数据分布情况,特别是中位数、四分位数等统计信息。

绘制散点图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_jitter(aes(color = Species))
alt

利用ggplot2包创建散点图,并通过geom_jitter功能添加一些随机噪声来分散点,以便更清晰地展示数据。

绘制箱线图+散点图

p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())
p
alt

单因素多水平比较

对于两组以上的独立样品,如果数据同时满足正态性和方差齐性,可以采用方差分析(ANOVA)或者Kruskal检验,如果不满足可采用Kruskal检验。

p <- p + stat_compare_means(
    method = "kruskal.test",
    label = "p.format",
    label.x = 2,
    label.y = 4,
    show.legend = F
)
p
alt

可以看到上图中自动标注的显著性P值,通过修改label参数可以转换展示方式,默认显示检验方法和p值。

p.format只显示p值不显示检验方法,p.signif显示显著性水平符号,ns: p > 0.05、*: p <= 0.05、**: p <= 0.01、***: p <= 0.001、****: p <= 0.0001。

  • method:选择统计学检验的方法
alt

单因素两两比较

如果想看两两之间的差异显著性,例如“setosa”和“versicolor”,可以通过wilcox.test方法进行检验。

# 首先设置比较的列表
compare_list <- list(
    c("setosa","versicolor"),
    c("versicolor","virginica")
p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())+
    stat_compare_means(
    comparisons = compare_list,
    method = "wilcox.test",
    label = "p.signif")
)

代码中stat_compare_means函数提供统计学检验,调节参数可以转换方法和展示方式。 alt

双因素组内比较

如果引入分组信息作为另外一个因素,那么可以对每个水平内两组进行比较。

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)
p
alt

箱线 + 散点

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)+
    geom_jitter(position = position_jitterdodge(jitter.width = 0.5,
                                                jitter.height = 0.5,
                                                dodge.width = 0.2))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()
p
alt

position_jitterdodge函数可以调整散点图的抖动范围,scale_fill_manual用于调整填充颜色,theme_bw用于设置主题,这段代码仅作图。

统计学检验

p <- p + stat_compare_means(
    aes(group = Group),
    label = "p.format",
    show.legend = F,
    label.y = 8.5
)
p
alt

这张图x轴是不同分类,每个分类下有A和B两组,y轴表示具体的值,每个分类上有P值标注。

在实际的分析可视化过程中,还要考虑实验设计、数据分布状态等因素,合理选择检验方法,并根据目的和需求修改相应参数。

本文由 mdnice 多平台发布

这篇关于R语言中使用ggplot2绘制散点图箱线图,附加显著性检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527543

相关文章

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安