Pandas(数据表)深入应用经验小结(查询、分组、上下行间计算等)

本文主要是介绍Pandas(数据表)深入应用经验小结(查询、分组、上下行间计算等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas是Python中一个功能强大的分析结构化数据的工具集,它的使用基础是Numpy(提供高性能的矩阵运算),用于数据挖掘和数据分析,同时也提供数据清洗功能,使数据分析流程变得简单高效。

DataFrame是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。

Series是一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。

本人在实际应用中,越发感觉到此工具的强大和方便,现分享个人的经验,欢迎反馈。

1. 案例一:读写到数据表

1.1. 从Mongo DB读取数据到Pandas DataFrame

import pymongo
import xgboost as xgb
import numpy as np
from datetime import datetime 
import pandas as pddef get_data():client = pymongo.MongoClient('mongodb://localhost:27017')db = client["oildepot"]collection = db["OilCanHistory"]#创建一个空的Dataframedf = pd.DataFrame(columns=('OilCanID','OilCode',...))CanStatus = {'出油':-1,'静止':0,'进油':1}    #永不超时,游标连接不会主动关闭,需要手动关闭with collection.find({'OilStockCode':'K1060030002','MearsureTime':{'$gt':'2019/7/1'}},{'OilCanID':1,'OilCode':1,..},no_cursor_timeout = True).batch_size(10) as cursor: #只要程序退出了with的缩进,游标自动就会关闭。如果程序中途报错,游标也会关闭for rowdat in cursor:OilCanID = rowdat['OilCanID']    #油罐代码OilCode = rowdat['OilCode']      #油罐代码...OilCanStatus = rowdat['OilCanStatus']        #油罐状态   OilCanStatus = OilCanStatus[0:2]OilCanStatus = CanStatus.get(OilCanStatus)   #转换字符串为数值...                  MearsureTime = MearsureTime[:MearsureTime.index(".")]#将计算结果逐行插入df,注意变量要用[]括起来,同时ignore_index=True,否则会报错,ValueError: If using all scalar values, you must pass an indexdf = df.append(pd.DataFrame({'OilCanID':[OilCanID],'OilCode':[OilCode],...}),ignore_index=True)cursor.close()  #手动关闭游标        return df

额外注:Mongo读数据使用游标,存在大量数据超时问题,需要设置不允许超时,但需要手动关闭游标。

1.2. 从Excel读取数据到Pandas DataFrame

  def get_DataFromExcel():df = pd.read_excel('e:/Candata1.xlsx')return df

1.3. 写Pandas DataFrame数据到Excel

df1.to_excel('e:/CandINCata.xlsx')

2. 案例二:与表中上一行数据做差处理

2.1. 取上行数据构建到同一行中

基于不自己再造轮子的原则,也就不使用遍历表的方法自行编码实现“与表中上一行数据做差处理”,而是使用Pandas工具组合完成此项功能。解决方案是按条件分组数据,提取分组后各个组数据子表分布处理:
在这里插入图片描述
(1)计算数据列下移一行合并到表中,注意合并后表假设为A,则A首行将会出现“NaN”,需要剔除;
(2)删除A表中的首行,同理下一个表B的首行也要删除;
(3)合并所有子表为新表;
在这里插入图片描述
(4)表内两列间做差处理(见下一小节)。

'''
Created on 2020年8月7日
@author: xiaoyw
'''
import pymongo
import numpy as np
from datetime import datetime 
import pandas as pddef add_prevdata(df):#分组,准备按分组拆分数据表   df=df.groupby('OilCanID').apply(lambda x:x.sort_values('MearsureTime',ascending=True)).reset_index(drop=True)df_group_id = df['OilCanID']  #返回是Series,取出分组标签数据df_group_id = df_group_id.drop_duplicates(keep='first')  #去掉分组数据重复数据count= df_group_id.shape[0]print("Begin")df_new = pd.DataFrame()   #创建空数据表,用扩展增存增加上一条记录值(移位)for i in range(count):df_tmp = df.loc[df['OilCanID']==df_group_id.iat[i]]  #按油罐提取数据子表#df_tmp['precvolume'] = df_tmp['LiquidVolume'].shift(1)  #下移一行df_shift = pd.DataFrame(columns=('precvolume','INCVol','preTime','INCPeriod'))df_shift.loc[:,'precvolume']= df_tmp['LiquidVolume'].shift(1)  #下移一行df_shift.loc[:,'preTime']= df_tmp['MearsureTime'].shift(1)  #下移一行df_tmp = pd.concat([df_tmp,df_shift],axis=1)        df_tmp=df_tmp.reset_index(drop=True)                    #重建索引,为了删除首行,因为首行没有上一条记录值,表示为NaNdf_tmp = df_tmp.drop(index=[0])                         #删除首行,因为首行没有上一条记录值,表示为NaNprint(df_tmp)df_new = df_new.append(df_tmp)print("进度为:{0:.2f}%".format(i/count*100))return df_newdf0 = get_DataFromExcel()
df1 = add_prevdata(df0)
#df1.to_excel('e:/CandINCata.xlsx')
print("End")

注:为什么不直接用“列”模式直接计算呢?
因为数据需要分组的原因,跨组数据存在不连续的情况,不知如何处理,欢迎专家赐教。

2.2. 表内同一行数据数学运算——差

def get_INCdata(df):df.loc[:,'INCVol'] = df['LiquidVolume'] - df['precvolume']df.loc[:,'INCPeriod'] =  pd.to_datetime(df['MearsureTime']) -  pd.to_datetime(df['preTime'])df.loc[:,'MearsureTime'] =  pd.to_datetime(df['MearsureTime']).dt.datereturn df

注意数据类型,例如时间数据可能变成Object,而不能直接处理,需要转换。

3. 问题篇

3.1. 数据表更新值的问题

Python报警如下:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
对应报警代码和改造后代码如下所示:

        #df_tmp['precvolume'] = df_tmp['LiquidVolume'].shift(1)  #下移一行df_shift = pd.DataFrame(columns=('precvolume','INCVol','preTime','INCPeriod'))df_shift.loc[:,'precvolume']= df_tmp['LiquidVolume'].shift(1)  #下移一行df_shift.loc[:,'preTime']= df_tmp['MearsureTime'].shift(1)  #下移一行df_tmp = pd.concat([df_tmp,df_shift],axis=1)        

解释:被注释掉的代码,容易出现表中数据不被更新的问题,原理见官方解释。

3.2. 数据类型问题

df0 = get_DataFromExcel()print(df0.dtypes)
df0['MearsureTime'] = df0['MearsureTime'].astype('datetime64')
字段名称类型
OilCanIDint64
OilCodeint64
MearsureTimeobject
OilTemperaturefloat64
OilCanStatusint64

dataframe中的 object 类型来自于 Numpy, 他描述了每一个元素 在 ndarray 中的类型 (也就是Object类型)。
在这里插入图片描述

3.3. DataFrame与Series

(1)从DataFrame取出单列返回的是Series:

df_group = df['OilCanID']  #返回是Series

(2)创建无数据表时,如果是单列则是Series:

df_shift = pd.DataFrame(columns=('precvolume'))

这样的代码将报错,提示单列创建的是Series。可以使用如下方法创建空的Series。

ds = pd.Series('Name')
print(ds)

输出结果为:0 Name

欢迎大家反馈指点。

参考:
《Indexing and selecting data》 pandas.pydata.org UserGuide
《基于Pandas实现皮尔逊相关与余弦相似度在工业大数据分析中的应用实践》 CSDN博客 ,肖永威 2020年8月
《机器学习与深度学习开发环境Python3.6(win10-64)全新自主安装过程》 CSDN博客 ,肖永威 2020年7月

这篇关于Pandas(数据表)深入应用经验小结(查询、分组、上下行间计算等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526237

相关文章

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security方法级安全控制@PreAuthorize注解的灵活运用小结

《SpringSecurity方法级安全控制@PreAuthorize注解的灵活运用小结》本文将带着大家讲解@PreAuthorize注解的核心原理、SpEL表达式机制,并通过的示例代码演示如... 目录1. 前言2. @PreAuthorize 注解简介3. @PreAuthorize 核心原理解析拦截与

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2