Deep Learning 文章选读(一)

2023-12-23 00:48
文章标签 文章 deep learning 选读

本文主要是介绍Deep Learning 文章选读(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为明确深度学习的一些概念,对一些优秀的论文进行选读。


Learning Deep Architectures for AI


Abstarct
theoretial results suggest that in order to learn the kind of complicated 
functions that can represent high-level abstractions, one may need deep 
architectures. Deep architectures are composed of multiple levels of non-linear 
operators, such as in neural nets with many hidden layers or in complicated 
propositional formulae re-using many sub-formulea. Searching the parameter
space of deep architectures is a difficult task, bust learning algorithms
such as those for Deep Belief Netwoks have recently been proposed to tackle
this problem with notable success, beating the state-of-art(最先进的) in certain areas.
This paper discusses the motivations and principles regarding learning algorithm
for deep architectures, in particular those exploiting as building blocks 
unsupervised learning of single-layer models such as Restricted Boltzmann Machines,
used to construct deeper models such as Deep Belief Networks. 
从摘要可以得知,本文主要讨论深度工程学习算法的的动机与原则。深度工程相关算法求
参数在技术上取得了一些成功。


Introduction
Allowing computers to model our word well enough to exhibit what we call intelligence
has been focus of more than half a century of research. To achieve this, it is clear 
that a large quantity of information about our world should somehow be stored, explicitly
or implicitly, in the computer. Because it seems daunting(气馁) to formalize manually
all that information in a form that computers can use to answer questions and generalize 
to new contexts, many researchers have turned to learning algorithms to capture a 
large fraction of that information. Much progress has been made to understand and 
improve learning algorithms, but the challenge of artifical intelligence(AI) remains.
Do we have algorithms that can understand scenes and describe them in natural language?
Not realy, except in very limited settings. Do we have algorithms that can infer enough
semantic(语义) concepts to be able to interact with most humans using these concepts?
No, If we consider image understandig ,one of the best specified of AI tasks, we realize 
that we do not yet have learning algorithm that can discover the many visual and 
semantic concepts that would seem to be necessary to interpret most images on the web.
The situation is similar for other AI tasks.
这部分指出无法用精确的数学公式刻画图片及语义。


Consider for example the task of interpreting an input image such as the one in Figure 1.
When humans try to solve a particular AI task(such as machine vision or natural langage
processing), they often exploit their intuition about how to decompose the problem into
sub-problems and multiple levels of representation, e.g. ,in object parts and constellation
(星群) models where models for parts can be re-used in different object instances. For
example, the current state-of-the-art in machine vision involves a sequence of modules
startig from pixels(像素) and ending in a linear or kernel classifier with intermediate modules
mixing engineered transformations and learning, e.g. first extracting low-level features
that are invariant to small geometric variations(such as edge detectors from Gabor filters),
transforming them gradually (e.g. to make them invariant to contrast changes and contrast
inversion(反向), sometimes by pooling and sub-sampling), and then detect the most frequent
patterns. A plausible and common way to extract useful information from a natural image
involves transfroming the raw pixel representation into gradually more abstract 
representations, e.g. starting from the presence of edges, the detection of more complex
but local shapes, up to the identification of abstract categories associated with 
sub-objects and objects which are parts of the image, and putting all these together
to capture enough understanding of the scene to answer questions about it.
此部分基本介绍了对图片深度学习的过程及意义,首先选取低水平的对于特征对于几何变化
不变的特征,(如利用Gabor filters提取边界的特征),再寻找对于validation不变的特征
(从图形角度可以理解为某种拓扑不变性,如伸缩、旋转),进一步地寻找最常用于区分的
特征部分,总的来说,就是采取非线性变换及卷积变换得到边界特征,再用于选择。







这篇关于Deep Learning 文章选读(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526134

相关文章

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频)

这是什么系统? 资源获取方式在最下方 java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频) 停车管理信息系统是为了提升停车场的运营效率和管理水平而设计的综合性平台。系统涵盖用户信息管理、车位管理、收费管理、违规车辆处理等多个功能模块,旨在实现对停车场资源的高效配置和实时监控。此外,系统还提供了资讯管理和统计查询功能,帮助管理者及时发布信息并进行数据分析,为停车场的科学

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑燃料电池和电解槽虚拟惯量支撑的电力系统优化调度方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

【Linux】萌新看过来!一篇文章带你走进Linux世界

🚀个人主页:奋斗的小羊 🚀所属专栏:Linux 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 前言💥1、初识Linux💥1.1 什么是操作系统?💥1.2 各种操作系统对比💥1.3 现代Linux应用💥1.4 Linux常用版本 💥2、Linux 和 Windows 目录结构对比💥2.1 文件系统组织方式💥2.2

多线程的系列文章

Java多线程学习(一)Java多线程入门 Java多线程学习(二)synchronized关键字(1)   Java多线程学习(二)synchronized关键字(2) Java多线程学习(三)volatile关键字 Java多线程学习(四)等待/通知(wait/notify)机制 Java多线程学习(五)线程间通信知识点补充 Java多线程学习(六)Lock锁的使用 Java多

缓存的常见问题 以及解决博客文章

1.jedispool 连 redis 高并发卡死  (子非鱼yy) https://blog.csdn.net/ztx114/article/details/78291734 2. Redis安装及主从配置 https://blog.csdn.net/ztx114/article/details/78320193 3.Spring中使用RedisTemplate操作Redis(sprin

java计算机毕设课设—企业员工信息管理系统(附源码、文章、相关截图、部署视频)

这是什么系统? 获取资料方式在最下方 java计算机毕设课设—企业员工信息管理系统(附源码、文章、相关截图、部署视频) 企业员工信息管理系统旨在为公司提供高效的员工信息管理解决方案。该系统的核心功能涵盖密码修改、员工管理、部门管理、出勤管理、工资管理、请假审核等方面,帮助企业优化人力资源管理流程。系统结构如下: (1)前端(员工端): 1.密码修改:员工可以修改自己的密码,提升账户的安全