有限元法计算二维圆柱绕流问题——Python代码实现

2023-12-22 20:30

本文主要是介绍有限元法计算二维圆柱绕流问题——Python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题描述

选取流函数Ψ为变量,对拉普拉斯方程进行求解(右边界为自然边界条件,其余边界为本质边界条件);

网格数据文件的生成暂时不在本文中详述。

二、节点和单元的数据读取

import numpy as np
import matplotlib as plt
from mpl_toolkits.mplot3d import Axes3D# 打开文件
try:with open('grid.dat', 'r') as f:# 读取节点数NP和单元数NEline = f.readline().strip()NP, NE = map(int, line.split())# 读取节点坐标X[0:NP,0]和X[0:NP,1]X = np.zeros((NP, 2),dtype = float)for i in range(NP):line = f.readline().strip()X[i] = np.array(list(map(float, line.split())))# 读取单元节点对应关系数组NOD[0:NE,0:3]NOD = np.zeros((NE,3),dtype = int)for i in range(NE):line = f.readline().strip()NOD[i] = np.array(list(map(int, line.split())))-1 #注意文件里的索引是从1开始的,而节点坐标数组X是从0开始的except FileNotFoundError:print("文件不存在")
except Exception as e:print("文件读取失败:", e)

三、设置本质边界条件

#设置本质边界条件
Ψ = np.zeros(NP)
substantial_bound_index = []
unknown_index = []
for i in range(NP):if X[i,1] == 0 :Ψ[i] = 0substantial_bound_index.append(i)elif X[i,1] == 2:Ψ[i] = 2substantial_bound_index.append(i)elif X[i,0] == -3.5:Ψ[i] = X[i,1]substantial_bound_index.append(i)elif abs(X[i,0]**2 + X[i,1]**2 - 1)<= 1e-3:#如果网格尺度变化,此处可能需要调整Ψ[i] =  0substantial_bound_index.append(i)else:unknown_index.append(i)

四、计算单元方程和整体方程

A_overall = np.zeros((NP,NP)) #整体方程的系数矩阵
f_overall = np.zeros(NP) #整体方程的右端项
#遍历所有单元,求单元方程的系数矩阵,并累加到整体方程的系数矩阵上
for i in range(NE):X_i = np.zeros(3)Y_i = np.zeros(3)node_index = np.zeros(3)node_index = NOD[i,:] #是从0开始的X_i = X[node_index,0]Y_i = X[node_index,1]A = 0.5*((X_i[1]-X_i[0])*(Y_i[2]-Y_i[0])-(Y_i[1]-Y_i[0])*(X_i[2]-X_i[0]))b1 = (Y_i[1]-Y_i[2])/(2*A)b2 = (Y_i[2]-Y_i[0])/(2*A)b3 = (Y_i[0]-Y_i[1])/(2*A)c1 = -(X_i[1]-X_i[2])/(2*A)c2 = -(X_i[2]-X_i[0])/(2*A)c3 = -(X_i[0]-X_i[1])/(2*A)A_overall[node_index[0],node_index[0]] += b1*b1 + c1*c1A_overall[node_index[1],node_index[1]] += b2*b2 + c2*c2A_overall[node_index[2],node_index[2]] += b3*b3 + c3*c3A_overall[node_index[0],node_index[1]] += b1*b2+c1*c2A_overall[node_index[1],node_index[0]] += b1*b2+c1*c2A_overall[node_index[0],node_index[2]] += b1*b3+c1*c3A_overall[node_index[2],node_index[0]] += b1*b3+c1*c3A_overall[node_index[1],node_index[2]] += b2*b3+c2*c3A_overall[node_index[2],node_index[1]] += b2*b3+c2*c3
#代入本质边界条件上的函数值,消元,只剩下待求节点的函数值
#计算消元后待求节点对应的右端项
for i in unknown_index:sum = 0for j in substantial_bound_index:sum += (-1)*A_overall[i,j]* Ψ[j]f_overall[i] = sum
#解线性方程组
A_tosolve = np.zeros((len(unknown_index),len(unknown_index)))
A_tosolve = A_overall[np.ix_(unknown_index,unknown_index)]
f_tosolve = f_overall[np.ix_(unknown_index)]
sol = np.linalg.solve(A_tosolve, f_tosolve)
#得到完整的节点Ψ数组
pos = 0
for i in unknown_index:Ψ[i] = sol[pos]pos+=1

五、计算单元和节点的流速和压强分布

首先利用前面计算出的节点流函数值,插值得到每个单元的流速;

然后,每个节点的流速则用相邻单元流速的加权平均(以单元面积为权重)得到;

最后,通过伯努利方程计算出节点的压强。

#计算单元的速度
vx = np.zeros(NE)
vy = np.zeros(NE)#计算节点的速度——每个节点的速度采用相邻单元速度的面积加权平均
node_sum_area = np.zeros(NP) #每个节点相邻的累积面积
vx_node = np.zeros(NP)
vy_node = np.zeros(NP)#遍历所有单元
for i in range(NE):X_i = np.zeros(3)Y_i = np.zeros(3)node_index = np.zeros(3)node_index = NOD[i,:] #是从0开始X_i = X[node_index,0]Y_i = X[node_index,1]A = 0.5*((X_i[1]-X_i[0])*(Y_i[2]-Y_i[0])-(Y_i[1]-Y_i[0])*(X_i[2]-X_i[0]))b1 = (Y_i[1]-Y_i[2])/(2*A)b2 = (Y_i[2]-Y_i[0])/(2*A)b3 = (Y_i[0]-Y_i[1])/(2*A)c1 = -(X_i[1]-X_i[2])/(2*A)c2 = -(X_i[2]-X_i[0])/(2*A)c3 = -(X_i[0]-X_i[1])/(2*A)vx[i] = c1*Ψ[NOD[i,0]]+c2*Ψ[NOD[i,1]]+c3*Ψ[NOD[i,2]]vy[i] = -b1*Ψ[NOD[i,0]]-b2*Ψ[NOD[i,1]]-b3*Ψ[NOD[i,2]]#更新节点的速度均值for j in range(3):s0 = node_sum_area[NOD[i,j]]vx0 = vx_node[NOD[i,j]]vx_node[NOD[i,j]] = (s0*vx0+A*vx[i])/(s0+A)vy0 = vy_node[NOD[i,j]]vy_node[NOD[i,j]] = (s0*vy0+A*vy[i])/(s0+A)node_sum_area[NOD[i,j]]+= A#计算节点的压力
p_node = np.zeros(NP)
for i in range(NP):p_node[i] = 0.5*(1-vx_node[i]**2 - vy_node[i]**2)

六、计算结果

一、流函数数值解的3D图

from mpl_toolkits.mplot3d import Axes3D
from matplotlib.tri import Triangulationtri = Triangulation(X[:, 0], X[:, 1])
#一、绘制流函数数值解的3D图
fig = plt.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], Ψ, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('Ψ_num')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('Ψ')
plt.pyplot.show()

二、数值解的流线图

#二、绘制数值解的流线图
z = Ψ
# 绘制等值线
levels = np.linspace(z.min(), z.max(), 30)
plt.pyplot.tricontour(tri, z, levels=levels, colors='k')
# 添加等值线标签
plt.pyplot.tricontourf(tri, z, levels=levels, cmap='viridis')
plt.pyplot.colorbar()
plt.pyplot.title('streamline _num')
plt.pyplot.show()

 

对比:解析解的流线图

# 三、绘制解析解的流线图
#解析解
Ψ_true= np.zeros(NP)
for i in range(NP):Ψ_true[i] = X[i, 1]*(1-1/(X[i,0]**2 + X[i,1]**2))
z = Ψ_true
# 绘制等值线
levels = np.linspace(z.min(), z.max(), 30)
plt.pyplot.tricontour(tri, z, levels=levels, colors='k')
# 添加等值线标签
plt.pyplot.tricontourf(tri, z, levels=levels, cmap='viridis')
plt.pyplot.colorbar()
plt.pyplot.title('streamline _true')
plt.pyplot.show()

可以观察到数值解与解析解的流线形状是比较相近的。

三、节点流速和压强的数值结果

#四、绘制节点压强的3D图
fig = plt.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], p_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('pressure')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('p')
plt.pyplot.show()

#五、绘制节点流速的3D图
fig = plt.pyplot.figure()ax = fig.add_subplot(121, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], vx_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('vx')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('vx')ax = fig.add_subplot(122, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], vy_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('vy')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('vy')plt.pyplot.show()

数值解在圆柱壁面附近出现较大的波动。 

这篇关于有限元法计算二维圆柱绕流问题——Python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525367

相关文章

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a