有限元法计算二维圆柱绕流问题——Python代码实现

2023-12-22 20:30

本文主要是介绍有限元法计算二维圆柱绕流问题——Python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题描述

选取流函数Ψ为变量,对拉普拉斯方程进行求解(右边界为自然边界条件,其余边界为本质边界条件);

网格数据文件的生成暂时不在本文中详述。

二、节点和单元的数据读取

import numpy as np
import matplotlib as plt
from mpl_toolkits.mplot3d import Axes3D# 打开文件
try:with open('grid.dat', 'r') as f:# 读取节点数NP和单元数NEline = f.readline().strip()NP, NE = map(int, line.split())# 读取节点坐标X[0:NP,0]和X[0:NP,1]X = np.zeros((NP, 2),dtype = float)for i in range(NP):line = f.readline().strip()X[i] = np.array(list(map(float, line.split())))# 读取单元节点对应关系数组NOD[0:NE,0:3]NOD = np.zeros((NE,3),dtype = int)for i in range(NE):line = f.readline().strip()NOD[i] = np.array(list(map(int, line.split())))-1 #注意文件里的索引是从1开始的,而节点坐标数组X是从0开始的except FileNotFoundError:print("文件不存在")
except Exception as e:print("文件读取失败:", e)

三、设置本质边界条件

#设置本质边界条件
Ψ = np.zeros(NP)
substantial_bound_index = []
unknown_index = []
for i in range(NP):if X[i,1] == 0 :Ψ[i] = 0substantial_bound_index.append(i)elif X[i,1] == 2:Ψ[i] = 2substantial_bound_index.append(i)elif X[i,0] == -3.5:Ψ[i] = X[i,1]substantial_bound_index.append(i)elif abs(X[i,0]**2 + X[i,1]**2 - 1)<= 1e-3:#如果网格尺度变化,此处可能需要调整Ψ[i] =  0substantial_bound_index.append(i)else:unknown_index.append(i)

四、计算单元方程和整体方程

A_overall = np.zeros((NP,NP)) #整体方程的系数矩阵
f_overall = np.zeros(NP) #整体方程的右端项
#遍历所有单元,求单元方程的系数矩阵,并累加到整体方程的系数矩阵上
for i in range(NE):X_i = np.zeros(3)Y_i = np.zeros(3)node_index = np.zeros(3)node_index = NOD[i,:] #是从0开始的X_i = X[node_index,0]Y_i = X[node_index,1]A = 0.5*((X_i[1]-X_i[0])*(Y_i[2]-Y_i[0])-(Y_i[1]-Y_i[0])*(X_i[2]-X_i[0]))b1 = (Y_i[1]-Y_i[2])/(2*A)b2 = (Y_i[2]-Y_i[0])/(2*A)b3 = (Y_i[0]-Y_i[1])/(2*A)c1 = -(X_i[1]-X_i[2])/(2*A)c2 = -(X_i[2]-X_i[0])/(2*A)c3 = -(X_i[0]-X_i[1])/(2*A)A_overall[node_index[0],node_index[0]] += b1*b1 + c1*c1A_overall[node_index[1],node_index[1]] += b2*b2 + c2*c2A_overall[node_index[2],node_index[2]] += b3*b3 + c3*c3A_overall[node_index[0],node_index[1]] += b1*b2+c1*c2A_overall[node_index[1],node_index[0]] += b1*b2+c1*c2A_overall[node_index[0],node_index[2]] += b1*b3+c1*c3A_overall[node_index[2],node_index[0]] += b1*b3+c1*c3A_overall[node_index[1],node_index[2]] += b2*b3+c2*c3A_overall[node_index[2],node_index[1]] += b2*b3+c2*c3
#代入本质边界条件上的函数值,消元,只剩下待求节点的函数值
#计算消元后待求节点对应的右端项
for i in unknown_index:sum = 0for j in substantial_bound_index:sum += (-1)*A_overall[i,j]* Ψ[j]f_overall[i] = sum
#解线性方程组
A_tosolve = np.zeros((len(unknown_index),len(unknown_index)))
A_tosolve = A_overall[np.ix_(unknown_index,unknown_index)]
f_tosolve = f_overall[np.ix_(unknown_index)]
sol = np.linalg.solve(A_tosolve, f_tosolve)
#得到完整的节点Ψ数组
pos = 0
for i in unknown_index:Ψ[i] = sol[pos]pos+=1

五、计算单元和节点的流速和压强分布

首先利用前面计算出的节点流函数值,插值得到每个单元的流速;

然后,每个节点的流速则用相邻单元流速的加权平均(以单元面积为权重)得到;

最后,通过伯努利方程计算出节点的压强。

#计算单元的速度
vx = np.zeros(NE)
vy = np.zeros(NE)#计算节点的速度——每个节点的速度采用相邻单元速度的面积加权平均
node_sum_area = np.zeros(NP) #每个节点相邻的累积面积
vx_node = np.zeros(NP)
vy_node = np.zeros(NP)#遍历所有单元
for i in range(NE):X_i = np.zeros(3)Y_i = np.zeros(3)node_index = np.zeros(3)node_index = NOD[i,:] #是从0开始X_i = X[node_index,0]Y_i = X[node_index,1]A = 0.5*((X_i[1]-X_i[0])*(Y_i[2]-Y_i[0])-(Y_i[1]-Y_i[0])*(X_i[2]-X_i[0]))b1 = (Y_i[1]-Y_i[2])/(2*A)b2 = (Y_i[2]-Y_i[0])/(2*A)b3 = (Y_i[0]-Y_i[1])/(2*A)c1 = -(X_i[1]-X_i[2])/(2*A)c2 = -(X_i[2]-X_i[0])/(2*A)c3 = -(X_i[0]-X_i[1])/(2*A)vx[i] = c1*Ψ[NOD[i,0]]+c2*Ψ[NOD[i,1]]+c3*Ψ[NOD[i,2]]vy[i] = -b1*Ψ[NOD[i,0]]-b2*Ψ[NOD[i,1]]-b3*Ψ[NOD[i,2]]#更新节点的速度均值for j in range(3):s0 = node_sum_area[NOD[i,j]]vx0 = vx_node[NOD[i,j]]vx_node[NOD[i,j]] = (s0*vx0+A*vx[i])/(s0+A)vy0 = vy_node[NOD[i,j]]vy_node[NOD[i,j]] = (s0*vy0+A*vy[i])/(s0+A)node_sum_area[NOD[i,j]]+= A#计算节点的压力
p_node = np.zeros(NP)
for i in range(NP):p_node[i] = 0.5*(1-vx_node[i]**2 - vy_node[i]**2)

六、计算结果

一、流函数数值解的3D图

from mpl_toolkits.mplot3d import Axes3D
from matplotlib.tri import Triangulationtri = Triangulation(X[:, 0], X[:, 1])
#一、绘制流函数数值解的3D图
fig = plt.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], Ψ, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('Ψ_num')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('Ψ')
plt.pyplot.show()

二、数值解的流线图

#二、绘制数值解的流线图
z = Ψ
# 绘制等值线
levels = np.linspace(z.min(), z.max(), 30)
plt.pyplot.tricontour(tri, z, levels=levels, colors='k')
# 添加等值线标签
plt.pyplot.tricontourf(tri, z, levels=levels, cmap='viridis')
plt.pyplot.colorbar()
plt.pyplot.title('streamline _num')
plt.pyplot.show()

 

对比:解析解的流线图

# 三、绘制解析解的流线图
#解析解
Ψ_true= np.zeros(NP)
for i in range(NP):Ψ_true[i] = X[i, 1]*(1-1/(X[i,0]**2 + X[i,1]**2))
z = Ψ_true
# 绘制等值线
levels = np.linspace(z.min(), z.max(), 30)
plt.pyplot.tricontour(tri, z, levels=levels, colors='k')
# 添加等值线标签
plt.pyplot.tricontourf(tri, z, levels=levels, cmap='viridis')
plt.pyplot.colorbar()
plt.pyplot.title('streamline _true')
plt.pyplot.show()

可以观察到数值解与解析解的流线形状是比较相近的。

三、节点流速和压强的数值结果

#四、绘制节点压强的3D图
fig = plt.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], p_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('pressure')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('p')
plt.pyplot.show()

#五、绘制节点流速的3D图
fig = plt.pyplot.figure()ax = fig.add_subplot(121, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], vx_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('vx')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('vx')ax = fig.add_subplot(122, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], vy_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('vy')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('vy')plt.pyplot.show()

数值解在圆柱壁面附近出现较大的波动。 

这篇关于有限元法计算二维圆柱绕流问题——Python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525367

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal