第一次记录QPSK,BSPK,MPSK,QAM—MATLAB实现

2023-12-22 19:36

本文主要是介绍第一次记录QPSK,BSPK,MPSK,QAM—MATLAB实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近有偶然的机会学习了一次QPSK防止以后忘记又得找资料,这里就详细的记录一下

        基于 QPSK 的通信系统如图 1 所示,QPSK 调制是目前最常用的一种卫星数字和数 字集群信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单,在后文仅仅使用MATLAB进行模拟。

图 1 基于QOSK调制的通信系统模型

        其相位图如图 2 所示,二进制数 0 和 1 分别表示两个相位,为了提高传输速率,通 常可以采用多项调制的方法,即将待发的数字信号按两比特一组的方式组合,两位二进 制数的组合方式又四种—(00,01,10,11)。每个组合是一个双比特码,通常可以用四 个不同的相位值表示这四组双比特码。在传输过程中,相位改变一次,传输两个二进制 数。这种调相方法成为四项调相或四项调制,广泛广泛应用 于卫星链路、数字集群等 通信业务。

图2相位图

如图 3 所示,QPSK 信号可以采用正交调制器来实现 

图3 QPSK信号生成原理图

 根据图1和图3的原理图,就可以开始着手写MATLAB代码了。 我将其分为以下几个方面

  1. 模拟源信号
  2. 源信号->双极性信号
  3. 双极性信号转为QPSK信号
  4. QPSK信号经过模拟信道传输,引起失真。
  5. 采用相干解调法分离QPSK信号。
  6. 低通滤波过滤噪音
  7. 抽样判决获得信号
  8. 最后将信号极性反转获得源信号

QPSK详细代码如下,在代码中已经做好注释了。

%% 采用代码实现的4PSK通信系统仿真
% 假设在T=1,加入高斯噪声
clc;
clear all;
close all;
%% 发端
% 1.调制,生成二进制信号
bit_in = randi([0 1],1000,1); 
% 2.变为双极性码
data = -2*bit_in+1;        
% 3.串并转换模块:奇数位为I,偶数为为Q
data_I  = data(1:2:1000);   % 间断获取 I
data_Q  = data(2:2:1000);   % 间断获取 Q
data_I1=repmat(data_I',20,1);
data_Q1=repmat(data_Q',20,1);% 按列优先将data_I1中的数据存入data_I2
for i=1:1e4data_I2(i)=data_I1(i);data_Q2(i)=data_Q1(i);
end% 4.产生升余弦的基带信号
f=0:0.1:1;
xrc=0.5+0.5*cos(pi*f); data_I2_rc=conv(data_I2,xrc)/5.5;
data_Q2_rc=conv(data_Q2,xrc)/5.5;figure
subplot(2,2,1)
stem(bit_in(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("发送的消息序列");
subplot(2,2,2)
plot(f,xrc,'black','LineWidth',2);
title("升余弦信号");
subplot(2,2,3)
plot(data_I2_rc(1:20),'black','LineWidth',2);
title("升余弦I信号");
subplot(2,2,4)
plot(data_Q2_rc(1:20),'black','LineWidth',2);
title("升余弦Q信号");% 5. 正交调制(调相法:将基带数字信号(双极性)与载波信号直接相乘的方法)
f1=1;                        % 载波频率
t1=0:0.1:1e3+0.9;I_rc=data_I2_rc.*cos(2*pi*f1*t1);
Q_rc=data_Q2_rc.*sin(2*pi*f1*t1);
x=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc);figure(1)
subplot(2,1,1);
plot(t1,x,'black','LineWidth',2); xlabel('t'); ylabel('幅度'); 
grid on; 
axis([0 1/f1*10 -1.2 1.2]);  % 输出2个周期的信号
title('QPSK信号'); %% 6.仿真信道噪声
n0=rand(size(t1))/2;
y=x+n0;subplot(2,1,2);
plot(t1,y,'black','LineWidth',2); xlabel('t'); ylabel('幅度'); 
grid on; 
axis([0 1/f1*10 -2 2]);  % 输出2个周期的信号
title('带噪声的QPSK信号'); %% 仿真接收端
% 7.正交解调:只能采用相干解调
I_demo=y.*cos(2*pi*f1*t1);
Q_demo=y.*sin(2*pi*f1*t1);
% 8.低通滤波
I_recover=conv(I_demo,xrc);    
Q_recover=conv(Q_demo,xrc);
I=I_recover(11:10010);
Q=Q_recover(11:10010);% 9.抽样判决
data_recover=[];
for i=1:20:10000data_recover=[data_recover I(i:1:i+19) Q(i:1:i+19)];
end
bit_recover=[];
for i=1:20:20000if sum(data_recover(i:i+19))>0data_recover_a(i:i+19)=1;bit_recover=[bit_recover 1];elsedata_recover_a(i:i+19)=-1;bit_recover=[bit_recover -1];end
end% 10.变为单极性码
bit_recovered=(1-bit_recover)/2; 
figure(2)
subplot(2,1,1)
stem(bit_in(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("发送的消息序列");subplot(2,1,2)
stem(bit_recovered(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("接收的消息序列");figure(3)
subplot(2,1,1)
stem(bit_in(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("发送的消息序列");subplot(2,1,2)
stem(data(1:20),'black','LineWidth',2);
axis([0,20,-1,1]);
title("双极性码");
set(gcf,'color','w')

BSPK的代码也贴在这里

clc
clear
close all;%%初始化参数设置
data_len = 100000;                       % 原始数据长度
SNR_dB = 0:10;                           % 信噪比 dB形式
SNR = 10.^(SNR_dB/10);                   % Eb/N0
Eb = 1; % 每比特能量
N0 = Eb./SNR ; %噪声功率
error2 = zeros(1,length(SNR_dB));          % 码元错误个数
simu_ber_BPSK = zeros(1,length(SNR_dB));         % 仿真误误码率
theory_ber_BPSK = zeros(1,length(SNR_dB));   % BPSK理论误码率
demod2_signal= zeros(1,data_len);         % 解调信号%%基带信号产生
data_source = round(rand(1,data_len));  % 二进制随机序列%%BPSK基带调制   
send_signal2 = (data_source - 1/2)*2; % 双极性不归零序列 %%高斯信道无编码
for z = 1:length(SNR_dB)noise2 = sqrt(N0(z)/2) * randn(1,data_len); %高斯白噪声receive_signal2 = send_signal2 + noise2;demod_signal2 = zeros(1,data_len);for w = 1:data_lenif (receive_signal2(w) > 0)demod_signal2(w) = 1;              % 接收信号大于0  则判1elsedemod_signal2(w) = 0;              % 接收信号小于0  则判0endend%统计错误码元个数for w = 1:data_lenif(demod_signal2(w) ~=data_source(w) )error2(z) = error2(z) + 1;    % 错误比特个数endend%计算误码率simu_ber_BPSK(z) = error2(z) / data_len;         % 仿真误比特率theory_ber_BPSK(z) = qfunc(sqrt(2*SNR(z)));   % 理论误比特率
end%%二进制序列、基带信号图像
figure(1);
stem(data_source);
title("二进制随机序列");
axis([0,50,0,1]);
figure(2);
stem(send_signal2);
title("BPSK基带调制--发送信号");
axis([0,50,-1.5,1.5]);figure(4);
stem(noise2);
title("高斯白噪声");
axis([0,50,-0.5,0.5]);figure(5)
stem(receive_signal2);
title("接收信号");
axis([0,50,-1.5,1.5]);figure(7)
stem(demod_signal2);
title("解调信号");
axis([0,50,0,1]);figure(8);semilogy(SNR_dB,simu_ber_BPSK,'M-X',SNR_dB,theory_ber_BPSK,'k-s');     grid on;                                      
axis([0 10 10^-5 10^-1])                      
xlabel('Eb/N0 (dB)');                     
ylabel('BER');                                  legend('BPSK仿真误码率','BPSK理论误码率');  %%画星座图
scatterplot(send_signal2);
title('发送信号星座图');
scatterplot(receive_signal2);
title('接收信号星座图');
scatterplot(demod_signal2);
title('解码信号星座图');

MPSK代码

clc;
clear all;
close all;
%% 调用库函数实现MPSK的通信系统仿真M=4;
cycl=80;       % 运行次数
SNR=0:1:30;    % 信噪比
s=randi([0 M-1],1,1000);  % 输入信息一行1000列;BER1=zeros(cycl,length(SNR));for  n=1:cyclfor k=1:length(SNR)x=pskmod(s,M,pi/4);               % M进制PSKy=awgn(x,SNR(k),'measured');      % 在传输序列中加入噪声r=pskdemod(y,M,pi/4);             % 解调r1=reshape(r',1,[]);[num,rat]=biterr(r1,s,log2(M));           % 误码率计算BER1(n,k)=rat;end
endfigure(1)
subplot(2,1,1)
stem(s(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("发送的消息序列");subplot(2,1,2)
stem(r1(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("接收的消息序列");%% 8PSK
M=8;
cycl=80;       % 运行次数
SNR=0:1:30;    % 信噪比
s=randi([0 M-1],1,1000);  % 输入信息一行1000列;BER2=zeros(cycl,length(SNR));for  n=1:cyclfor k=1:length(SNR)x=pskmod(s,M,pi/4);               % M进制PSKy=awgn(x,SNR(k),'measured');      % 在传输序列中加入噪声r=pskdemod(y,M,pi/4);             % 解调r1=reshape(r',1,[]);[num,rat]=biterr(r1,s,log2(M));           % 误码率计算BER2(n,k)=rat;end
endfigure(2)
subplot(2,1,1)
stem(s(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("原始消息序列");subplot(2,1,2)
stem(r1(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("传递消息序列");% 统计平均误码率
figure(3)BER1=mean(BER1);
subplot(2,1,1)
semilogy(SNR,BER1,'k-o','LineWidth',2);
xlabel('SNR/dB'); ylabel('BER');
title("4PSK");
grid onBER2=mean(BER2);
subplot(2,1,2)
semilogy(SNR,BER2,'k-o','LineWidth',2);
xlabel('SNR/dB'); ylabel('BER');
title("8PSK");
grid on

QAM代码也在这里

clc;
clear all;
close all;
%% 基于16QAM的通信系统仿真
% 发端
nbit=10000; 
M=16;                                              % M表示QAM调制的阶数
k=log2(M);
graycode=[0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10];  % 格雷映射编码规则
EsN0=5:20;                         % 信噪比范围
snr=10.^(EsN0/10);                 % 将db转换为线性值
% 产生16进制的消息符号
s=randi([0,1],1,nbit);         
s_reshape=reshape(s,k,nbit/k)';    % 对数据流进行分组,对于16QAM,则每4位一组
msg=bi2de(s_reshape,'left-msb');   % 转化成10进制,作为qammod的输入
% 进行格雷映射
msg1=graycode(msg+1);        
% 调制
r=qammod(msg1,M);         % 调用matlab中的qammod函数,16QAM调制方式的调用(输入0到15的数,M表示QAM调制的阶数)得到调制后符号
spow1=norm(r).^2/nbit;    % 取a+bj的模.^2得到功率除整个符号得到每个符号的平均功率
for i=1:length(EsN0)% 信道sigma=sqrt(spow1/(2*snr(i)));                          % 16QAM根据符号功率求出噪声的功率x=r+sigma*(randn(1,length(r))+1i*randn(1,length(r)));  % 16QAM混入高斯加性白噪声% 16QAM的解调y1=qamdemod(x,M);             % 格雷逆映射y2=graycode(y1+1);        % 返回译码出来的信息,十进制test=de2bi(y2,k,'left-msb');y3=reshape(test',1,nbit);[err1,ber1(i)]=biterr(s,y3); 
end
%% 绘图
figure(1)
subplot(2,1,1)
stem(s(1:20),'black','LineWidth',2);
axis([0,20,0,1.2]);
title("发送的消息序列");subplot(2,1,2)
stem(y3(1:20),'black','LineWidth',2);
axis([0,20,0,1.2]);
title("接收的消息序列");scatterplot(r);           % 调用matlab中的scatterplot函数,画星座点图
scatterplot(x);           % 调用matlab中的scatterplot函数,画rx星座点图% 16QAM调制信号在AWGN信道的性能
figure( )
semilogy(EsN0,ber1,'black','LineWidth',2);                            % ber ser比特仿真值 ser1理论误码率 ber1理论误比特率
title('16QAM调制信号在AWGN信道的性能分析');grid;
xlabel('Es/N0(dB)');                      
ylabel('误比特率');                          

这篇关于第一次记录QPSK,BSPK,MPSK,QAM—MATLAB实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525200

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2