案例精析—2021语言与智能技术竞赛:多形态信息抽取任务

本文主要是介绍案例精析—2021语言与智能技术竞赛:多形态信息抽取任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

总结

  • 文章来源:CSDN_LawsonAbs
  • LawsonAbs的认知与思考,望各位读者审慎阅读。
  • 本文可以看做是2021语言与智能技术竞赛:多形态信息抽取任务比赛过程的一个记录。

1 百度Baseline

百度baseline是使用paddle 写的,主要的思想是一个多层的指针网络。

1.1 关于 predicate2id.json 文件

这里针对 predicate = 配音这个就生成了如下两个 predicate 值:
配音_inwork配音_@value。 因为这是一个复杂的结构体,而不能简单的抽取配音就可以了。
在这里插入图片描述

1.2 在运行 run_duie.py 脚本时,出现如下的界面?是什么问题?

在这里插入图片描述

没找到是什么原因。惨!

2. 2020年的冠军解决方案

采用创新技术方案,把实体抽取任务分为主语抽取、宾语抽取和关系分类三个步骤,输出层采用机器阅读理解中的指针网络作为基本结构,有效解决了实体进行两两匹配带来的大量负样本问题,训练效果大大提升,最终取得了第一名的成绩。

3 Baseline 的错误样例分析

这些问题来源于 error case 分析

3.1 text 没有有效的分隔符(猜测)

在这里插入图片描述
预测结果:
在这里插入图片描述
这里预测结果较差,主要有两个原因:

  • 因为text 间没有有效的分隔符,
  • baseline 中的是 将subject 和 object 全部组合在一起,

2 噪音数据

在这里插入图片描述
在这里插入图片描述
模型能够预测出来,但是dev_train.json 中却没有给出正确的来。

在这里插入图片描述
上面这条数据是不是有点儿问题? 只是标注了一个西班牙语,怎么就变成了官方语言?
在这里插入图片描述
针对上面这条数据,我想采取一个分阶段训练的方法:

  • 第一阶段大致训练一个模型
  • 第二阶段开始精致调参,丢弃loss超过一定范围的数据。要保证每条数据都能被完全充分的利用

这种数据标注情况非常常见,所以一定要使用修改后的train数据来训练,否则会很影响训练效果

3.3 少字导致错误

如下面所示: 因为预测的是情人,而正确的是情人节,导致出现错误。
在这里插入图片描述

这个里面还有一个就是@xxx 竟然也被预测出来了。

3.4 遗漏数据

训练好的模型有很多遗漏,这里简单展示一下:
forget

在这里插入图片描述
在这里插入图片描述

观察这么多的数据,发现原因是无法预测潜在的关系

其实模型并不知道 的差别,它们的embedding 甚至都很相似,所以就会产生下面这种错误。
在这里插入图片描述

其它

在这里插入图片描述

在这里插入图片描述
这里的数字都预测错误了

在这里插入图片描述
隔这么远都能预测,但是预测的都是错误的,肯定是有某些数据导致产生这种问题。

遗漏的有1w条(recall很低),(即使除去官方数据中的错误标注)precision也不是很高。
在这里插入图片描述

3.4 我的想法

3.4.1 噪音数据处理(未实现)

将空格,替换成[sep],或者是其它特殊字符。

3.4.2 数据迭代(未实现)

当前的模型根本是理解不了语义的,所以我认为一切的问题都是数据的问题,如果能利用好所有的正确数据,而规避错误数据集,再采用迭代训练的方式来解决这个问题。

3.4.3 dropout(未实现)

能不能 dropout 掉所有无用的数据?

4 疑问

4.1 怎么根据生成的标签,匹配出一组?

将匹配出来的subject 和 object 循环匹配即可,所以这种匹配方式可能会导致出现冗余。冗余情形如下:
在这里插入图片描述

4.2 如何根据predicate 的label生成最后的结果?

这个是写在baseline utils.py 下 的decoding 函数中。

5 团队方案

基于之前的冠军方案,下面介绍一下我们的方案

5.1 模型结构

在这里插入图片描述
总体是一个 pipeline 的方式:

  • step 1. 先预测subject 【NER问题】
  • setp 2. 再预测上述subject 下的所有 object 【NER 问题】
  • step 3. 使用上述 subject 和 object 得到的元组,去预测二者的关系类别 【分类问题】

样例解释:在这里插入图片描述

  • 先预测出宇文娥英
  • 再在宇文娥英 的基础上,预测出杨丽华周宣帝
  • 再将宇文娥英+杨丽华 => 母亲宇文娥英+周宣帝 => 父亲

5.2 模型效果

在这里插入图片描述

precision 和 recall都很低 ,说明模型遗漏了基础要点。

5.3 模型预测结果错误样例分析

5.3.1 subject 预测的成功率不高(待解决)

单独运行 预测subject 的效果,发现其效果并不好
在这里插入图片描述

5.3.2 英文字符间的空格被分开了导致出错(待解决)

在这里插入图片描述

5.3.3 因为字不在vocab库导致出错(已解决)

在这里插入图片描述

5.4 改进方案

  • 使用subjectobject预测relation时,加O 类。(加一部分噪音数据构造O类) 【2021-4-11】
  • 模型加CRF 【2021-4-11】
  • 模型加入scheduler 参数 【2021-04-18】
  • pu learning 【2021-04-18】
  • 数据迭代【2021-04-25】
  • 梯度累积【2021-04-25】
  • 在训练模型时使用 Sampler 【2021-04-25】

5.5 其它优化方案

  • 降低batch中的数据集大小

这篇关于案例精析—2021语言与智能技术竞赛:多形态信息抽取任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525092

相关文章

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

C语言中的浮点数存储详解

《C语言中的浮点数存储详解》:本文主要介绍C语言中的浮点数存储详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、首先明确一个概念2、接下来,讲解C语言中浮点型数存储的规则2.1、可以将上述公式分为两部分来看2.2、问:十进制小数0.5该如何存储?2.3 浮点

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安