Frida07 - dexdump核心源码分析

2023-12-22 17:28

本文主要是介绍Frida07 - dexdump核心源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目地址

https://github.com/hluwa/frida-dexdump

代码解析

项目中的核心函数是 searchDex:

function searchDex(deepSearch) {var result = [];Process.enumerateRanges('r--').forEach(function (range) {try {....} catch (e) {}});return result;
}

里面用了一个新的API,Process.enumerateRanges,我们看一下API介绍:

enumerates memory ranges satisfying protection given as a string of the form: rwx, where rw- means “must be at least readable and writable”.

使用这个API可以在进程中搜索所有可读的内存段,我们可以直接传递 ‘r—’ 的形式,也可以传递一个对象:{protection: '---', coalesce: true } ,coalesce 的值表示是否需要合并相同权限的内存段,默认是 false。

这个函数会返回一个数组对象,里面的元素有如下属性:

  1. base:基地址,NativePointer,可以理解为C里面的指针。

  2. size:内存块大小,in bytes

  3. protection:保护属性,string

  4. file:(如果有的话)内存映射文件:

    1. path,文件路径,string

    2. offset,文件内偏移,in bytes

    3. size,文件大小,in bytes

继续看源码:

Memory.scanSync(range.base, range.size, "64 65 78 0a 30 ?? ?? 00").forEach(function (match) {if (range.file && range.file.path && (range.file.path.startsWith("/data/dalvik-cache/") || range.file.path.startsWith("/system/"))) {return;}if (verify(match.address, range, false)) {var dex_size = get_dex_real_size(match.address, range.base, range.base.add(range.size));result.push({"addr": match.address,"size": dex_size});var max_size = range.size - match.address.sub(range.base).toInt32();if (deepSearch && max_size != dex_size) {result.push({"addr": match.address,"size": max_size});}}
});

又用到了一个新的API,Memory.scanSync,看看文档介绍:

scan memory for occurrences of pattern in the memory range given by address and size.

就是按照 pattern 给定的模式来搜索指定范围的内存是否又匹配的。

64 65 78 0a 30 ?? ?? 00

表示搜索的模式是 以 64 65 78 0a 30 字节开头的,中间两个字节不关心,后面跟着一个 00 的8个字节,如果有满足的则触发回调。

为啥要搜索这几个字节呢?是因为这几个字节是 dex 的文件魔数。可以看下官方文档介绍:

https://source.android.com/docs/core/runtime/dex-format?hl=zh-cn

作者设置的比较宽泛,中间的两个字节表示的是 dex 的版本号,会搜索所有版本号的 dex。

文档介绍 pattern 还有一个 r2-style 的写法,但是搜了一下没看太明白,就不说了。

回调会传递一个对象,里面的属性有:

  1. onMatch: function(address, size): 扫描到一个内存块,起始地址是address,大小size的内存块,返回字符串 stop 表示停止扫描

  2. onError: function(reason): 扫描内存的时候出现内存访问异常的时候回调

  3. onComplete: function(): 内存扫描完毕的时候调用

再回到源码:

if (range.file && range.file.path && (range.file.path.startsWith("/data/dalvik-cache/") || range.file.path.startsWith("/system/"))) {return;
}

系统app的dex,我们不需要。

if (verify(match.address, range, false)) {var dex_size = get_dex_real_size(match.address, range.base, range.base.add(range.size));result.push({"addr": match.address,"size": dex_size});var max_size = range.size - match.address.sub(range.base).toInt32();if (deepSearch && max_size != dex_size) {result.push({"addr": match.address,"size": max_size});}
}

verify 函数是对 dex 进行校验,主要是根据自己对 dex 文件的熟悉程度来做校验。

比如 dex 文件应该至少有 0x70 个字节,因为这是 dex 文件头的大小。

比如,0x3c位置的字节必定是 0x70,因为文件头后面跟着的就是字符串。

作者还开了一个深度验证,利用maps,其实原理很简单,我们使用010editor打开一个dex:

文件头里面有一个 map_off 字段,它的值是 map_list 段在dex文件内的偏移。

我们再看 map_list 段:

这里也储存了自身的一个偏移,那么根据这两个东西,就可以认为这个是dex文件。

具体代码如下:

function verify_by_maps(dexptr, mapsptr) {var maps_offset = dexptr.add(0x34).readUInt();var maps_size = mapsptr.readUInt();for (var i = 0; i < maps_size; i++) {var item_type = mapsptr.add(4 + i * 0xC).readU16();if (item_type === 4096) {var map_offset = mapsptr.add(4 + i * 0xC + 8).readUInt();if (maps_offset === map_offset) {return true;}}}return false;
}

然后再计算 map_list 结束的位置:

function get_maps_end(maps, range_base, range_end) {var maps_size = maps.readUInt();if (maps_size < 2 || maps_size > 50) {return null;}var maps_end = maps.add(maps_size * 0xC + 4);if (maps_end < range_base || maps_end > range_end) {return null;}return maps_end;
}

最后通过减掉起始地址,就可以得到真正的文件大小了:

function get_dex_real_size(dexptr, range_base, range_end) {var dex_size = dexptr.add(0x20).readUInt();var maps_address = get_maps_address(dexptr, range_base, range_end);if (!maps_address) {return dex_size;}var maps_end = get_maps_end(maps_address, range_base, range_end);if (!maps_end) {return dex_size;}return maps_end.sub(dexptr).toInt32();
}

如果开了深度搜索,匹配方式又有不同:

Memory.scanSync(range.base, range.size, "70 00 00 00").forEach(function (match) {var dex_base = match.address.sub(0x3C);if (dex_base < range.base) {return;}if (dex_base.readCString(4) != "dex\n" && verify(dex_base, range, true)) {var real_dex_size = get_dex_real_size(dex_base, range.base, range.base.add(range.size));if (!verify_ids_off(dex_base, real_dex_size)) {return;}result.push({"addr": dex_base,"size": real_dex_size});var max_size = range.size - dex_base.sub(range.base).toInt32();if (max_size != real_dex_size) {result.push({"addr": dex_base,"size": max_size});}}
});

70 00 00 00 是dex文件头里面字符串的偏移段。这是因为有些加固厂商会修改 dex 的魔数,所以作者选择了这种匹配方式。

可以看到,逆向的重心,除了api用的熟之外,还需要对app本身的相关知识要有足够的了解才行。

这篇关于Frida07 - dexdump核心源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524819

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

详解MySQL中DISTINCT去重的核心注意事项

《详解MySQL中DISTINCT去重的核心注意事项》为了实现查询不重复的数据,MySQL提供了DISTINCT关键字,它的主要作用就是对数据表中一个或多个字段重复的数据进行过滤,只返回其中的一条数据... 目录DISTINCT 六大注意事项1. 作用范围:所有 SELECT 字段2. NULL 值的特殊处

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis