本文主要是介绍偏向锁、轻量级锁和重量级锁的相互转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
结合网上查询的资料说说自己的见解
Synchronized锁升级的过程:
一个对象A刚开始实例化的时候,没有任何线程来访问它的时候。它是可偏向的,意味着,它现在认为只可能有一个线程来访问它,所以当第一个线程T1来访问它的时候,它会偏向T1,此时,对象A持有偏向锁。
此时A是偏向第一个线程T1,T1在修改对象头成为偏向锁的时候使用CAS操作,并将对象头中的ThreadID改成自己的ID,之后再次访问这个对象时,只需要对比ID,不需要再使用CAS在进行操作。(具体看文末:二、获取轻量锁的过程)
一旦有第二个线程T2访问这个对象,因为偏向锁不会主动释放,所以T2可以看到对象时偏向状态,这时表明在这个对象上已经存在竞争了。检查原来持有该对象锁的线程T1是否依然存活,如果挂了,则可以将对象变为无锁状态,然后重新偏向新的线程,如果原来的线程依然存活,则马上执行那个线程的操作栈,检查该对象的使用情况,如果仍然需要持有偏向锁,则偏向锁升级为轻量级锁,(偏向锁就是这个时候升级为轻量级锁的)。如果不存在使用了,则可以将对象回复成无锁状态,然后重新偏向。
轻量级锁认为竞争存在,但是竞争的程度很轻,一般两个线程对于同一个锁的操作都会错开,或者说稍微等待一下,即自旋(具体看文末:三、自旋锁),另一个线程就会释放锁。 但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁膨胀为重量级锁,重量级锁使除了拥有锁的线程以外的线程都阻塞,防止CPU空转
一、什么是markword
在介绍java锁之前,先说下什么是markword,markword是java对象数据结构中的一部分,要详细了解java对象的结构可以点击这里,这里只做markword的详细介绍,因为对象的markword和java各种类型的锁密切相关;
markword数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32bit和64bit,它的最后2bit是锁状态标志位,用来标记当前对象的状态,对象的所处的状态,决定了markword存储的内容,如下表所示:
32位虚拟机在不同状态下markword结构如下图所示:
二、获取轻量锁的过程
1.在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为 Displaced Mark Word。这时候线程堆栈与对象头的状态如图1
2.拷贝对象头中的Mark Word复制到锁记录中;
3.拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤4,否则执行步骤5。
4.如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如图所示。
5.如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。 而当前线程便尝试使用自旋来获取锁,自旋就是为了不让线程阻塞,而采用循环去获取锁的过程。
三、自旋锁
自旋锁原理非常简单,如果持有锁的线程能在很短时间内释放锁资源,那么那些等待竞争锁的线程就不需要做内核态和用户态之间的切换进入阻塞挂起状态,它们只需要等一等(自旋),等持有锁的线程释放锁后即可立即获取锁,这样就避免用户线程和内核的切换的消耗。
但是线程自旋是需要消耗cpu的,说白了就是让cpu在做无用功,如果一直获取不到锁,那线程也不能一直占用cpu自旋做无用功,所以需要设定一个自旋等待的最大时间。
如果持有锁的线程执行的时间超过自旋等待的最大时间扔没有释放锁,就会导致其它争用锁的线程在最大等待时间内还是获取不到锁,这时争用线程会停止自旋进入阻塞状态。
自旋锁的优缺点
自旋锁尽可能的减少线程的阻塞,这对于锁的竞争不激烈,且占用锁时间非常短的代码块来说性能能大幅度的提升,因为自旋的消耗会小于线程阻塞挂起再唤醒的操作的消耗,这些操作会导致线程发生两次上下文切换!
但是如果锁的竞争激烈,或者持有锁的线程需要长时间占用锁执行同步块,这时候就不适合使用自旋锁了,因为自旋锁在获取锁前一直都是占用cpu做无用功,占着XX不XX,同时有大量线程在竞争一个锁,会导致获取锁的时间很长,线程自旋的消耗大于线程阻塞挂起操作的消耗,其它需要cpu的线程又不能获取到cpu,造成cpu的浪费。所以这种情况下我们要关闭自旋锁;
自旋锁时间阈值
自旋锁的目的是为了占着CPU的资源不释放,等到获取到锁立即进行处理。但是如何去选择自旋的执行时间呢?如果自旋执行时间太长,会有大量的线程处于自旋状态占用CPU资源,进而会影响整体系统的性能。因此自旋的周期选的额外重要!
JVM对于自旋周期的选择,jdk1.5这个限度是一定的写死的,在1.6引入了适应性自旋锁,适应性自旋锁意味着自旋的时间不在是固定的了,而是由前一次在同一个锁上的自旋时间以及锁的拥有者的状态来决定,基本认为一个线程上下文切换的时间是最佳的一个时间,同时JVM还针对当前CPU的负荷情况做了较多的优化
如果平均负载小于CPUs则一直自旋
如果有超过(CPUs/2)个线程正在自旋,则后来线程直接阻塞
如果正在自旋的线程发现Owner发生了变化则延迟自旋时间(自旋计数)或进入阻塞
如果CPU处于节电模式则停止自旋
自旋时间的最坏情况是CPU的存储延迟(CPU A存储了一个数据,到CPU B得知这个数据直接的时间差)
自旋时会适当放弃线程优先级之间的差异
自旋锁的开启
JDK1.6中-XX:+UseSpinning开启;
-XX:PreBlockSpin=10 为自旋次数;
JDK1.7后,去掉此参数,由jvm控制;
参考:https://blog.csdn.net/choukekai/article/details/63688332
https://blog.csdn.net/zqz_zqz/article/details/70233767
这篇关于偏向锁、轻量级锁和重量级锁的相互转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!