FPGA模块——以太网(1)MDIO读写

2023-12-22 04:36

本文主要是介绍FPGA模块——以太网(1)MDIO读写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FPGA模块——以太网MDIO读写

  • MDIO接口介绍
  • MDIO接口代码
    • (1)MDIO接口驱动代码
    • (2)使用MDIO驱动的代码

MDIO接口介绍

MDIO是串行管理接口。MAC 和 PHY 芯片有一个配置接口,即 MDIO 接口,可以配置 PHY 芯片的工作模式以及获取 PHY 芯片的若干状态信息。

1.MDIO部分的接口结构
在这里插入图片描述

2.千兆以太网在接口上兼容百兆和十兆以太网。
在这里插入图片描述
在这里插入图片描述
3.YT8511 是一个千兆以太网物理层收发器,支持 1000/100/10Mbps 通信速率,该芯片内部的参数可以通过MDIO接口进行配置。
在这里插入图片描述

MDIO接口代码

MDIO接口主要是控制三根接口线,进行驱动和读写。
在这里插入图片描述

(1)MDIO接口驱动代码

mdio_dri文件:输入一些读写开始等等控制信号,输出读到的数据和控制芯片的时钟

module mdio_dri #(parameter  PHY_ADDR = 5'b00100,//PHY地址parameter  CLK_DIV  = 6'd10    //分频系数)(input                clk       , //时钟信号input                rst_n     , //复位信号,低电平有效input                op_exec   , //触发开始信号input                op_rh_wl  , //低电平写,高电平读input        [4:0]   op_addr   , //寄存器地址input        [15:0]  op_wr_data, //写入寄存器的数据output  reg          op_done   , //读写完成output  reg  [15:0]  op_rd_data, //读出的数据output  reg          op_rd_ack , //读应答信号 0:应答 1:未应答output  reg          dri_clk   , //驱动时钟output  reg          eth_mdc   , //PHY管理接口的时钟信号inout                eth_mdio    //PHY管理接口的双向数据信号);//parameter define
localparam st_idle    = 6'b00_0001;  //空闲状态
localparam st_pre     = 6'b00_0010;  //发送PRE(前导码)
localparam st_start   = 6'b00_0100;  //开始状态,发送ST(开始)+OP(操作码)
localparam st_addr    = 6'b00_1000;  //写地址,发送PHY地址+寄存器地址
localparam st_wr_data = 6'b01_0000;  //TA+写数据
localparam st_rd_data = 6'b10_0000;  //TA+读数据//reg define
reg    [5:0]  cur_state ;
reg    [5:0]  next_state;reg    [5:0]  clk_cnt   ;  //分频计数                      
reg   [15:0]  wr_data_t ;  //缓存写寄存器的数据
reg    [4:0]  addr_t    ;  //缓存寄存器地址
reg    [6:0]  cnt       ;  //计数器
reg           st_done   ;  //状态开始跳转信号
reg    [1:0]  op_code   ;  //操作码  2'b01(写)  2'b10(读)                  
reg           mdio_dir  ;  //MDIO数据(SDA)方向控制
reg           mdio_out  ;  //MDIO输出信号
reg   [15:0]  rd_data_t ;  //缓存读寄存器数据//wire define
wire          mdio_in    ; //MDIO数据输入
wire   [5:0]  clk_divide ; //PHY_CLK的分频系数assign eth_mdio = mdio_dir ? mdio_out : 1'bz; //控制双向io方向
assign mdio_in = eth_mdio;                    //MDIO数据输入
//将PHY_CLK的分频系数除以2,得到dri_clk的分频系数,方便对MDC和MDIO信号操作
assign clk_divide = CLK_DIV >> 1;//分频得到dri_clk时钟
always @(posedge clk or negedge rst_n) beginif(!rst_n) begindri_clk <=  1'b0;clk_cnt <= 1'b0;endelse if(clk_cnt == clk_divide[5:1] - 1'd1) beginclk_cnt <= 1'b0;dri_clk <= ~dri_clk;endelseclk_cnt <= clk_cnt + 1'b1;
end//产生PHY_MDC时钟
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n)eth_mdc <= 1'b1;else if(cnt[0] == 1'b0)eth_mdc <= 1'b1;else    eth_mdc <= 1'b0;  
end//(三段式状态机)同步时序描述状态转移
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n)cur_state <= st_idle;elsecur_state <= next_state;
end  //组合逻辑判断状态转移条件
always @(*) beginnext_state = st_idle;case(cur_state)st_idle : beginif(op_exec)next_state = st_pre;else next_state = st_idle;   end  st_pre : beginif(st_done)next_state = st_start;elsenext_state = st_pre;endst_start : beginif(st_done)next_state = st_addr;elsenext_state = st_start;endst_addr : beginif(st_done) beginif(op_code == 2'b01)                //MDIO接口写操作  next_state = st_wr_data;elsenext_state = st_rd_data;        //MDIO接口读操作  endelsenext_state = st_addr;endst_wr_data : beginif(st_done)next_state = st_idle;elsenext_state = st_wr_data;end        st_rd_data : beginif(st_done)next_state = st_idle;elsenext_state = st_rd_data;end                                                                          default : next_state = st_idle;endcaseend//时序电路描述状态输出
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n) begincnt <= 5'd0;op_code <= 1'b0;addr_t <= 1'b0;wr_data_t <= 1'b0;rd_data_t <= 1'b0;op_done <= 1'b0;st_done <= 1'b0; op_rd_data <= 1'b0;op_rd_ack <= 1'b1;mdio_dir <= 1'b0;mdio_out <= 1'b1;endelse beginst_done <= 1'b0 ;                            cnt     <= cnt +1'b1 ;          case(cur_state)st_idle : beginmdio_out <= 1'b1;                     mdio_dir <= 1'b0;                     op_done <= 1'b0;                     cnt <= 7'b0;  if(op_exec) beginop_code <= {op_rh_wl,~op_rh_wl}; //OP_CODE: 2'b01(写)  2'b10(读) addr_t <= op_addr;wr_data_t <= op_wr_data;op_rd_ack <= 1'b1;end     end st_pre : begin                          //发送前导码:32个1bit mdio_dir <= 1'b1;                   //切换MDIO引脚方向:输出mdio_out <= 1'b1;                   //MDIO引脚输出高电平if(cnt == 7'd62) st_done <= 1'b1;else if(cnt == 7'd63)cnt <= 7'b0;end            st_start  : begincase(cnt)7'd1 : mdio_out <= 1'b0;        //发送开始信号 2'b017'd3 : mdio_out <= 1'b1; 7'd5 : mdio_out <= op_code[1];  //发送操作码7'd6 : st_done <= 1'b1;7'd7 : beginmdio_out <= op_code[0];cnt <= 7'b0;  end    default : ;endcaseend    st_addr : begincase(cnt)7'd1 : mdio_out <= PHY_ADDR[4]; //发送PHY地址7'd3 : mdio_out <= PHY_ADDR[3];7'd5 : mdio_out <= PHY_ADDR[2];7'd7 : mdio_out <= PHY_ADDR[1];  7'd9 : mdio_out <= PHY_ADDR[0];7'd11: mdio_out <= addr_t[4];  //发送寄存器地址7'd13: mdio_out <= addr_t[3];7'd15: mdio_out <= addr_t[2];7'd17: mdio_out <= addr_t[1];  7'd18: st_done <= 1'b1;7'd19: beginmdio_out <= addr_t[0]; cnt <= 7'd0;end    default : ;endcase                end    st_wr_data : begincase(cnt)7'd1 : mdio_out <= 1'b1;         //发送TA,写操作(2'b10)7'd3 : mdio_out <= 1'b0;7'd5 : mdio_out <= wr_data_t[15];//发送写寄存器数据7'd7 : mdio_out <= wr_data_t[14];7'd9 : mdio_out <= wr_data_t[13];7'd11: mdio_out <= wr_data_t[12];7'd13: mdio_out <= wr_data_t[11];7'd15: mdio_out <= wr_data_t[10];7'd17: mdio_out <= wr_data_t[9];7'd19: mdio_out <= wr_data_t[8];7'd21: mdio_out <= wr_data_t[7];7'd23: mdio_out <= wr_data_t[6];7'd25: mdio_out <= wr_data_t[5];7'd27: mdio_out <= wr_data_t[4];7'd29: mdio_out <= wr_data_t[3];7'd31: mdio_out <= wr_data_t[2];7'd33: mdio_out <= wr_data_t[1];7'd35: mdio_out <= wr_data_t[0];7'd37: beginmdio_dir <= 1'b0;mdio_out <= 1'b1;end7'd39: st_done <= 1'b1;           7'd40: begincnt <= 7'b0;op_done <= 1'b1;      //写操作完成,拉高op_done信号 end    default : ;endcase    endst_rd_data : begincase(cnt)7'd1 : beginmdio_dir <= 1'b0;            //MDIO引脚切换至输入状态mdio_out <= 1'b1;end7'd2 : ;                         //TA[1]位,该位为高阻状态,不操作             7'd4 : op_rd_ack <= mdio_in;     //TA[0]位,0(应答) 1(未应答)7'd6 : rd_data_t[15] <= mdio_in; //接收寄存器数据7'd8 : rd_data_t[14] <= mdio_in;7'd10: rd_data_t[13] <= mdio_in;7'd12: rd_data_t[12] <= mdio_in;7'd14: rd_data_t[11] <= mdio_in;7'd16: rd_data_t[10] <= mdio_in;7'd18: rd_data_t[9] <= mdio_in;7'd20: rd_data_t[8] <= mdio_in;7'd22: rd_data_t[7] <= mdio_in;7'd24: rd_data_t[6] <= mdio_in;7'd26: rd_data_t[5] <= mdio_in;7'd28: rd_data_t[4] <= mdio_in;7'd30: rd_data_t[3] <= mdio_in;7'd32: rd_data_t[2] <= mdio_in;7'd34: rd_data_t[1] <= mdio_in;7'd36: rd_data_t[0] <= mdio_in;7'd39: st_done <= 1'b1;7'd40: beginop_done <= 1'b1;             //读操作完成,拉高op_done信号          op_rd_data <= rd_data_t;rd_data_t <= 16'd0;cnt <= 7'd0;enddefault : ;endcase   end                default : ;endcase               end
end                    endmodule

(2)使用MDIO驱动的代码

mdio_ctrl文件:对寄存器进行读写配置,主要还是读取状态,用于显示

1.基本控制寄存器地址:0x00
代码里面配置为16’h9140 即1001_0001_0100_0000
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.基本状态寄存器地址:0x01
用来读出转态信息
在这里插入图片描述
在这里插入图片描述

3.特定状态寄存器地址:0x11
在这里插入图片描述

module mdio_ctrl(input                clk           ,input                rst_n         ,input                soft_rst_trig , //软复位触发信号input                op_done       , //读写完成input        [15:0]  op_rd_data    , //读出的数据input                op_rd_ack     , //读应答信号 0:应答 1:未应答output  reg          op_exec       , //触发开始信号output  reg          op_rh_wl      , //低电平写,高电平读output  reg  [4:0]   op_addr       , //寄存器地址output  reg  [15:0]  op_wr_data    , //写入寄存器的数据output       [1:0]   led             //LED灯指示以太网连接状态);//reg define
reg          rst_trig_d0;    
reg          rst_trig_d1;    
reg          rst_trig_flag;   //soft_rst_trig信号触发标志
reg  [23:0]  timer_cnt;       //定时计数器 
reg          timer_done;      //定时完成信号
reg          start_next;      //开始读下一个寄存器标致
reg          read_next;       //处于读下一个寄存器的过程
reg          link_error;      //链路断开或者自协商未完成
reg  [2:0]   flow_cnt;        //流程控制计数器 
reg  [1:0]   speed_status;    //连接速率 //wire define
wire         pos_rst_trig;    //soft_rst_trig信号上升沿//采soft_rst_trig信号上升沿
assign pos_rst_trig = ~rst_trig_d1 & rst_trig_d0;
//未连接或连接失败时led赋值00
// 01:10Mbps  10:100Mbps  11:1000Mbps 00:其他情况
assign led = link_error ? 2'b00: speed_status;
//对soft_rst_trig信号延时打拍
always @(posedge clk or negedge rst_n) beginif(!rst_n) beginrst_trig_d0 <= 1'b0;rst_trig_d1 <= 1'b0;endelse beginrst_trig_d0 <= soft_rst_trig;rst_trig_d1 <= rst_trig_d0;end
end//定时计数
always @(posedge clk or negedge rst_n) beginif(!rst_n) begintimer_cnt <= 1'b0;timer_done <= 1'b0;endelse beginif(timer_cnt == 24'd1_000_000 - 1'b1) begintimer_done <= 1'b1;timer_cnt <= 1'b0;endelse begintimer_done <= 1'b0;timer_cnt <= timer_cnt + 1'b1;endend
end    //根据软复位信号对MDIO接口进行软复位,并定时读取以太网的连接状态
always @(posedge clk or negedge rst_n) beginif(!rst_n) beginflow_cnt <= 3'd0;rst_trig_flag <= 1'b0;speed_status <= 2'b00;op_exec <= 1'b0; op_rh_wl <= 1'b0; op_addr <= 1'b0;       op_wr_data <= 1'b0; start_next <= 1'b0; read_next <= 1'b0; link_error <= 1'b0;endelse beginop_exec <= 1'b0; if(pos_rst_trig)                      rst_trig_flag <= 1'b1;             //拉高软复位触发标志case(flow_cnt)2'd0 : beginif(rst_trig_flag) begin        //开始对MDIO接口进行软复位op_exec <= 1'b1; op_rh_wl <= 1'b0; op_addr <= 5'h00; op_wr_data <= 16'h9140;    // Bit[15]=1'b1,表示软复位flow_cnt <= 3'd1;endelse if(timer_done) begin      //定时完成,获取以太网连接状态op_exec <= 1'b1; op_rh_wl <= 1'b1; op_addr <= 5'h01; flow_cnt <= 3'd2;endelse if(start_next) begin       //开始读下一个寄存器,获取以太网通信速度op_exec <= 1'b1; op_rh_wl <= 1'b1; op_addr <= 5'h11;flow_cnt <= 3'd2;start_next <= 1'b0; read_next <= 1'b1; endend    2'd1 : beginif(op_done) begin              //MDIO接口软复位完成flow_cnt <= 3'd0;rst_trig_flag <= 1'b0;endend2'd2 : begin                       if(op_done) begin              //MDIO接口读操作完成if(op_rd_ack == 1'b0 && read_next == 1'b0) //读第一个寄存器,接口成功应答,flow_cnt <= 3'd3;                      //读第下一个寄存器,接口成功应答else if(op_rd_ack == 1'b0 && read_next == 1'b1)begin read_next <= 1'b0;flow_cnt <= 3'd4;endelse beginflow_cnt <= 3'd0;endend    end2'd3 : begin                     flow_cnt <= 3'd0;          //链路正常并且自协商完成if(op_rd_data[5] == 1'b1 && op_rd_data[2] == 1'b1)beginstart_next <= 1;link_error <= 0;endelse beginlink_error <= 1'b1;  end           end3'd4: beginflow_cnt <= 3'd0;if(op_rd_data[15:14] == 2'b10)speed_status <= 2'b11; //1000Mbpselse if(op_rd_data[15:14] == 2'b01) speed_status <= 2'b10; //100Mbps else if(op_rd_data[15:14] == 2'b00) speed_status <= 2'b01; //10Mbpselsespeed_status <= 2'b00; //其他情况  endendcaseend    
end    endmodule

这篇关于FPGA模块——以太网(1)MDIO读写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522625

相关文章

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Python模块导入的几种方法实现

《Python模块导入的几种方法实现》本文主要介绍了Python模块导入的几种方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录一、什么是模块?二、模块导入的基本方法1. 使用import整个模块2.使用from ... i