pandas对列数据进行处理(列数据字符串设置为NaN)|pandas.to_numeric

2023-12-21 23:32

本文主要是介绍pandas对列数据进行处理(列数据字符串设置为NaN)|pandas.to_numeric,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

to_numeric方法官网链接

  • 需求:dataFrame列数据中有字符串,需要把字符串替换为NaN
  • 效果图:
    A   B        C           D   E   F
a   0   1        2           3   4   5
b   6   7  welcome           9  10  11
c  12  13       to          15  16  17
d  18  19    China          21  22  23
e  24  25        你          27  28  29
f  30  31       32        6556  34  35
————————————————————转换如下——————————————————A   B     C     D   E   F
a   0   1   2.0     3   4   5
b   6   7   NaN     9  10  11
c  12  13   NaN    15  16  17
d  18  19   NaN    21  22  23
e  24  25   NaN    27  28  29
f  30  31  32.0  6556  34  35
  • 代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})# 创建模拟数据
df = pd.DataFrame(np.arange(36).reshape(6, 6), index=list('abcdef'), columns=list('ABCDEF'))print(df)
print(df.dtypes)
df.iloc[1, 2] = 'welcome'
df.iloc[2, 2] = 'to'
df.iloc[3, 2] = 'China'
df.iloc[4, 2] = '你'
df.iloc[5, 3] = '      6556'
print(df)
print(df.dtypes)print('———————————————转换如下———————————————————————')
# 第 2 列数据 字符串 set as NaN.
df.iloc[:, 2] = pd.to_numeric(df.iloc[:, 2], errors='coerce')
# 第 3 列数据  本身可以转为  int类型,则进行转换
df.iloc[:, 3] = pd.to_numeric(df.iloc[:, 3], downcast='integer')
print(df)
print(df.dtypes)
# data_raw.replace('', np.nan, inplace=True)

这篇关于pandas对列数据进行处理(列数据字符串设置为NaN)|pandas.to_numeric的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521882

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分