pandas对列数据进行处理(列数据字符串设置为NaN)|pandas.to_numeric

2023-12-21 23:32

本文主要是介绍pandas对列数据进行处理(列数据字符串设置为NaN)|pandas.to_numeric,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

to_numeric方法官网链接

  • 需求:dataFrame列数据中有字符串,需要把字符串替换为NaN
  • 效果图:
    A   B        C           D   E   F
a   0   1        2           3   4   5
b   6   7  welcome           9  10  11
c  12  13       to          15  16  17
d  18  19    China          21  22  23
e  24  25        你          27  28  29
f  30  31       32        6556  34  35
————————————————————转换如下——————————————————A   B     C     D   E   F
a   0   1   2.0     3   4   5
b   6   7   NaN     9  10  11
c  12  13   NaN    15  16  17
d  18  19   NaN    21  22  23
e  24  25   NaN    27  28  29
f  30  31  32.0  6556  34  35
  • 代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})# 创建模拟数据
df = pd.DataFrame(np.arange(36).reshape(6, 6), index=list('abcdef'), columns=list('ABCDEF'))print(df)
print(df.dtypes)
df.iloc[1, 2] = 'welcome'
df.iloc[2, 2] = 'to'
df.iloc[3, 2] = 'China'
df.iloc[4, 2] = '你'
df.iloc[5, 3] = '      6556'
print(df)
print(df.dtypes)print('———————————————转换如下———————————————————————')
# 第 2 列数据 字符串 set as NaN.
df.iloc[:, 2] = pd.to_numeric(df.iloc[:, 2], errors='coerce')
# 第 3 列数据  本身可以转为  int类型,则进行转换
df.iloc[:, 3] = pd.to_numeric(df.iloc[:, 3], downcast='integer')
print(df)
print(df.dtypes)
# data_raw.replace('', np.nan, inplace=True)

这篇关于pandas对列数据进行处理(列数据字符串设置为NaN)|pandas.to_numeric的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521882

相关文章

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb