基于pytorch 构建神经网络进行气温预测

2023-12-21 17:38

本文主要是介绍基于pytorch 构建神经网络进行气温预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
path = 'E:/nlp课件/test_data/temps.csv'
features = pd.read_csv(path)
features.head()
yearmonthdayweektemp_2temp_1averageactualfriend
0201611Fri454545.64529
1201612Sat444545.74461
2201613Sun454445.84156
3201614Mon444145.94053
4201615Tues414046.04441
数据表中
  • year,moth,day,week分别表示的具体的时间
  • temp_2:前天的最高温度值
  • temp_1:昨天的最高温度值
  • average:在历史中,每年这一天的平均最高温度值
  • actual:标签值,当天的真实最高温度
print('数据维度:', features.shape)
数据维度: (348, 9)
# 处理时间
years = features['year']
month = features['month']
day = features['day']
dates = [str(int(years)) + '-' + str(int(month)) + '-' + str(int(day)) for years, month, day in zip(years, month, day)]
from datetime import datetime
dates = [datetime.strptime(date, '%Y-%m-%d') for date in dates]
dates[:5]
[datetime.datetime(2016, 1, 1, 0, 0),datetime.datetime(2016, 1, 2, 0, 0),datetime.datetime(2016, 1, 3, 0, 0),datetime.datetime(2016, 1, 4, 0, 0),datetime.datetime(2016, 1, 5, 0, 0)]
# 生成图像
# 默认风格
plt.style.use('fivethirtyeight')
# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows = 2, ncols = 2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')plt.tight_layout(pad=2)

在这里插入图片描述

# one-hot
features = pd.get_dummies(features)
features[:5]
yearmonthdaytemp_2temp_1averageactualfriendweek_Friweek_Monweek_Satweek_Sunweek_Thursweek_Tuesweek_Wed
0201611454545.645291000000
1201612444545.744610010000
2201613454445.841560001000
3201614444145.940530100000
4201615414046.044410000010
# 目标值 
labels = np.array(features['actual'])# 在特征之中去掉标签
features = features.drop('actual', axis = 1)# 保存列名
features_list = list(features.columns)# 转换格式
features = np.array(features)
features.shape
(348, 14)
from sklearn.preprocessing import StandardScaler
input_features = StandardScaler().fit_transform(features)
input_features[0]
array([ 0.        , -1.5678393 , -1.65682171, -1.48452388, -1.49443549,-1.3470703 , -1.98891668,  2.44131112, -0.40482045, -0.40961596,-0.40482045, -0.40482045, -0.41913682, -0.40482045])

构建网络模型

x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)# 权重参数初始化   [348,14] * [14, 128] * [128] * [128, 1] * [1]
weights = torch.randn((14, 128), dtype = float, requires_grad = True)
biases = torch.randn(128, dtype = float, requires_grad = True)
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
biases2 = torch.randn(1, dtype = float, requires_grad = True)
learning_rate = 0.001
losses = []
for i in range(1000):# 计算隐层hidden = x.mm(weights) + biases# 激活函数hidden = torch.relu(hidden)# 预测结果predictions = hidden.mm(weights2) + biases2# 计算损失 - MSEloss = torch.mean((predictions - y)**2)losses.append(loss.data.numpy)# 打印损失if i % 100 == 0:print('loss:', loss)# 反向传播loss.backward()# 更新参数weights.data.add_(- learning_rate * weights.grad.data)biases.data.add_(- learning_rate * biases.grad.data)weights2.data.add_(- learning_rate * weights2)biases2.data.add_(- learning_rate * biases2)# 更新后梯度置0,否则会累加weights.grad.data.zero_()biases.grad.data.zero_()weights2.grad.data.zero_()biases2.grad.data.zero_()
loss: tensor(4769.2916, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(168.6445, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(152.0681, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(147.8071, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(146.4026, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(146.3492, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(147.1898, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(148.8380, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(151.3747, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(154.9829, dtype=torch.float64, grad_fn=<MeanBackward0>)

序列化容器构建网络模型

import torch.nn as nn
from torch.optim import Adam
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = nn.Sequential(nn.Linear(input_size, hidden_size),nn.Sigmoid(),nn.Linear(hidden_size, output_size)
)
cost = nn.MSELoss(reduction= 'mean')
optimizer = Adam(my_nn.parameters(), lr = learning_rate)
# 训练网络
losses = []
for i in range(1000):batch_loss = []# mini_batch 方式进行训练for start in range(0, len(input_features), batch_size):end = start + batch_size if batch_size + start < len(input_features) else len(input_features)xx = torch.tensor(input_features[start : end], dtype = torch.float, requires_grad = True)yy = torch.tensor(labels[start : end], dtype = torch.float, requires_grad = True)# 前向传播predictions = my_nn(xx)# 计算损失loss = cost(predictions, yy)# 梯度置0optimizer.zero_grad()# 反向传播loss.backward(retain_graph = True)# 更新参数optimizer.step()batch_loss.append(loss.data.numpy())# 打印损失if i % 100 == 0:losses.append(np.mean(batch_loss))print(i, np.mean(batch_loss))
0 3980.642
100 37.847748
200 35.684933
300 35.318283
400 35.14371
500 35.006382
600 34.884396
700 34.761875
800 34.633102
900 34.49755

预测训练结果

x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(years)) + '-' + str(int(month)) + '-' + str(int(day)) for years, month, day in zip(years, month, day)]
dates = [datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, features_list.index('month')]
days = features[:, features_list.index('day')]
years = features[:, features_list.index('year')]test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]test_dates = [datetime.strptime(date, '%Y-%m-%d') for date in test_dates]predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) 
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60'); 
plt.legend()# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

在这里插入图片描述

这篇关于基于pytorch 构建神经网络进行气温预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/520899

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}