pytorch实现RNN,majing论文的谣言检测

2023-12-21 11:59

本文主要是介绍pytorch实现RNN,majing论文的谣言检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RNN实现谣言检测

    • 遇到的问题:
    • 数据处理篇
    • 模型搭建和数据提取篇

--------更新时间-------2019/06/08
人真的可以生如蚁,而美如神!
时间不多,废话少说!先处理数据!

遇到的问题:

  1. 训练时,loss总是在几个数之间,每一轮训练的精度都是一样的!
    这个问题我刚开始以为是模型的weigth和bias没有更新,导致每次训练都是固定的参数在跑,结果打印可更新的参数,发现
    参数所以,排除了这个。

数据处理篇

拿到majing的微博数据,发现每一个微博原文都是json文件,里面存放的是原始微博和一些用户的评论以及转发信息。
首先,去除重复的微博文本。这个很简单,就是用网上的聚类分析那些文本是一样的,这里我不多说,因为这个工作已经被同学做了。
然后,开始处理剩下的不重复文本,我处理的办法很简单:

		- 提取原始微博和下面的评论,也就是一个json文件中的所有origrial-text。- 按原始文本的文件命名,里面存放用jieba分好词的内容- 将所有的微博加评论都写到一个txt文件中,用word2vec训练出词向量。

这就算处理好了数据。接下来,开始用pytorch写model,然后取数据进行训练

模型搭建和数据提取篇

这里还是作为重点介绍:
目录在这里插入图片描述
这里data目录下,主要放的是已经分号词的微博文本的json格式。里面只有分好词的文本和标签。
wordmodel是之前用word2vec训练后,保存的词向量。
接下来写pytorch给我们定义好的dataload:

#将数据分成四份,一份测试,其余作训练
class ShipDataset(data.Dataset):def __init__(self,vali = 1,Train = True,dir='./data'):super(ShipDataset, self).__init__()self.train = []self.vaild = []#获取数据清单flist = []for root, dirs, files in os.walk(dir):for file in files:if os.path.splitext(file)[1] == '.json':flist.append(os.path.join(root, file))flist = [flist[i:i + len(flist)//5] for i in range(0, len(flist), len(flist)//5)]for i in range(len(flist)):if i == vali:self.vaild = flist[i]else:self.train +=flist[i]self.ModeTrain = Trainself.MO = word2vec.Word2Vec.load('./WordModel')def __getitem__(self, item):X = []Y = Noneif self.ModeTrain:filename = self.train[item]else:filename = self.vaild[item]with open(filename, 'r', encoding='utf-8') as f:fjson = json.load(f)for i in fjson['text']:try:X.append(self.MO[i])except (KeyError):# logger.info(i +'没有向量化!')continueX = torch.tensor(X[0:30])  # 这里由于每条句子长度不一致,导致无法封装到一个batch里,所以才设置取前30Y = int(fjson['label'])# Y = torch.tensor(int(fjson['label'])).float()if Y == 0 :    #非谣言Y = torch.tensor([0.0,1.0])else:Y = torch.tensor([1.0,0.0])return X,Ydef __len__(self):#返回数据的数量if self.ModeTrain:return len(self.train)else:return len(self.vaild)

这样将数据可以打包成batchSize,十分方便。后面训练的时候直接调用这个类,如下:

train_data = ShipDataset()
train_loader = data.DataLoader(train_data, batch_size=4, num_workers=0, shuffle=False)

我们通过迭代train_loader来取数据,放到模型里训练了。

接下来就是介绍模型定义,pytorch定义模型十分方便和直观,也很灵活。如果要做对比实验,使用它相比tensorflow要好用的多,为啥呢?因为pytorch使用动态图,在一个类里面可以定义很多个,训练的时候直接拿出来用,不像tensorflow,要先把所有模型都定义完,然后session.run(),这样违背我们常规编程思维。pytorch如果说像python语言的话,那么tensorflow就像C++之类的,需要编译、链接,最后run,一旦一个地方出错,即使这个地方前面的代码没毛病,也会退出,不执行。
废话不多说,先模型定义:

class RNNModel(nn.Module):def __init__(self,input_size,hidden_size,n_layers,lstm,GPU):super(RNNModel, self).__init__()self.n_layers = n_layersself.input_size = input_sizeself.lstm = lstmself.hidden_size = hidden_sizeself.gpu = GPUif self.gpu == True:self.rnn = nn.LSTM(input_size, hidden_size, n_layers, batch_first=True ).cuda()self.gru = nn.GRU(input_size, hidden_size, n_layers, batch_first=True).cuda()# self.linear = nn.Linear(self.hidden_size,2)  #二分类,最后结果[0,1] [1,0]self.layer = nn.Sequential(nn.Linear(self.hidden_size, 2), nn.Sigmoid()).cuda()else:self.rnn = nn.LSTM(input_size, hidden_size, n_layers, batch_first=True)self.gru = nn.GRU(input_size, hidden_size, n_layers, batch_first=True)self.layer = nn.Sequential(nn.Linear(self.hidden_size, 2), nn.Sigmoid())def forward(self,input,state=None):batch, _, _ = input.size()if self.gpu == True:if self.lstm == True:if state is None:h = torch.randn(self.n_layers, batch, self.hidden_size).cuda().float()c = torch.randn(self.n_layers, batch, self.hidden_size).cuda().float()else:h, c = state# output [batchsize,time,hidden_size]output, state = self.rnn(input, (h, c))else:if state is None:state = torch.randn(self.n_layers, batch, self.hidden_size).cuda().float()output, state = self.gru(input, state)else:if self.lstm == True:if state is None:h = torch.randn(self.n_layers, batch, self.hidden_size).float()c = torch.randn(self.n_layers, batch, self.hidden_size).float()else:h, c = state# output [batchsize,time,hidden_size]output, state = self.rnn(input, (h, c))else:if state is None:state = torch.randn(self.n_layers, batch, self.hidden_size).float()output, state = self.gru(input, state)#最后输出结果output = self.layer(output[:, -1, :])return output,state

这里写的很臃肿,主要是为了既能在CPU上跑,又能运行在GPU上。好的机器当然要用好的资源嘛!
上面类定义了GRU和lstm,可以通过参数选择要使用的训练模型:

self.rnn = nn.LSTM(input_size, hidden_size, n_layers, batch_first=True)
self.gru = nn.GRU(input_size, hidden_size, n_layers, batch_first=True)

通过self.lstm 这个来选择,是不是很方便。tensorflow有这样灵活吗?
接下来就是RUN函数了,这个就是训练了!
话不多说,献上代码,这里只看在GPU上跑的代码
loss损失函数采用nn.BCELoss()。这个是对二分类的交叉损失函数!(这个我没看具体源码和公式,不知道pytorch是怎么封装的,所以有错误还请批评指正!)

def RunGPU(opt):#将模型迁移到GPU上lr = 1e-3model = RNNModel(opt.inputsize, opt.hidden_size, opt.layers,lstm=True,GPU=True).cuda()optimizer = torch.optim.Adam(model.parameters(), lr=lr)criterion = nn.BCELoss().cuda()# 查看可更新的参数# for name, param in model.named_parameters():#     if param.requires_grad:#         print(name)# return#将数据迁移到GPU`train_data = ShipDataset(vali=2)train_loader = data.DataLoader(train_data, batch_size=6, num_workers=2, shuffle=False)valid_data = ShipDataset(vali=2,Train=False)valid_loader = data.DataLoader(valid_data, batch_size=8, num_workers=2, shuffle=False)for epoch in range(opt.epochs):# lr = adjust_learning_rate(lr, epoch)for i, trainset in enumerate(train_loader):X, Y = trainsetX = torch.tensor(X).cuda()Y = torch.tensor(Y).cuda()out_y, _ = model(X)# logger.info(Y)# logger.info(out_y)loss = criterion(out_y, Y)optimizer.zero_grad()loss.backward()optimizer.step()# for param in model.named_parameters():#     logger.info(param)if i % 100 == 0:print('batch_loss: {0},学习率为{1}'.format(loss, lr))out = torch.tensor([[0.0,0.0]]).cuda()y = torch.tensor([[0.0,0.0]]).cuda()for valiset in valid_loader:v_X,v_Y = valisetv_X = torch.tensor(v_X).cuda()v_Y = torch.tensor(v_Y).cuda()out_y, _ = model(v_X)# logger.info(out_y)# logger.info(out)out = torch.cat((out,out_y),0)y = torch.cat((y,v_Y),0)# logger.info(out)# logger.info(y)correct_pred = torch.eq(torch.argmax(out, 1), torch.argmax(y, 1))acc = correct_pred.sum().item()/ y.size(0)print('第 {0} 轮训练精度为 {1}'.format(epoch + 1, acc))viz.scatter(X=np.array([[epoch + 1, loss.item()]]), name='loss', win=loss_win, update='append')viz.scatter(X=np.array([[epoch + 1, acc]]), name='acc', win=acc_win, update='append')if acc > 0.90:torch.save({'epoch': epoch + 1,# 'arch': args.arch,'state_dict': model.state_dict(),'loss': loss,}, 'checkpoint{0}.tar'.format(epoch + 1))

这里如果将代码一句一句解释的话就有点罗嗦了,我主要说一下怎样算在验证数据集上的精度。
将一轮训练后模型在验证数据集上跑一遍。具体,验证数据集也是通过dataload取的,所以是一个batchsize一个batchsize的丢到模型里面去跑,每一个batch得到一个out_y,每一个batch也有自己的标签label,然后用torch.cat()函数将这些out_y连接起来,同理label也是一样连接起来。对于一个样本,out_y会类似于[0.23,0.95],由于0.95>0.23,它可以近视认为模型把它归为第二类,也就是非谣言。Y就很直观可以取出来。两者如果最大值所在的位置是一样的,说明模型预测成功,否则,错误!

 correct_pred = torch.eq(torch.argmax(out, 1), torch.argmax(y, 1))

下面是用visdom得到的loss和acc散点图!
请看官笑纳:

在这里插入图片描述美,最后祝大家生活愉快!
附上代码链接,Github地址:https://github.com/liAoI/RNN-pytorch–,不要忘了加星哦!

附上数据集(百度云):
链接:https://pan.baidu.com/s/1JEpQmEmO4fVd3SrLbFYyrg
提取码:yjn4

希望大家如果有更好更大的数据集,能给我留言,发我一份,在此小弟不甚感激!(感动)

这篇关于pytorch实现RNN,majing论文的谣言检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519907

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体