[转载] CTR预估中的贝叶斯平滑方法

2023-12-21 03:08

本文主要是介绍[转载] CTR预估中的贝叶斯平滑方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:CTR预估中的贝叶斯平滑方法(一)原理及实验介绍、贝叶斯平滑

文章目录

    • 竞价模式:
    • 遇到的困难:
    • 假设
    • 数据的连续性
    • 数据层级结构的贝叶斯平滑方法代码实现
    • 贝叶斯平滑方法参数估计和代码实现


竞价模式:

对于在线广告,主要有以下几种竞价模式:

  • 1)pay-per-impression(按展示付费):广告商按照广告被展示的次数付费,这是一种最普遍的竞价模型。缺点在于没有考虑投放广告的效果。
  • 2)pay-per-action(按行为付费):只有在广告产生了销售或者类似的一些转化时,广告商才付费。缺点在于追踪用户的交易行为相对比较困难。
  • 3)pay-per-click(按用户点击付费):根据用户是否会点击广告来付费。这时候就需要对广告的点击率(CTR)进行精确的预估。

遇到的困难:

由于数据的稀疏性,对广告进行CTR预估是比较具有挑战性的,预估出来的CTR的可靠性不高,且具有较大的方差。主要有以下两类场景:

  • 1)当广告的展示次数较少的时候,对其直接进行CTR的统计计算会导致一个偏高的结果。比如某个广告只展示了1次,被点击了1次,则纯粹的统计CTR=1.0,这显然是过分高估了。
  • 2)当广告的展示次数很大,但点击次数很少或几乎没有的时候,对其直接进行CTR的统计计算会导致一个偏低的结果。比如某个广告没有被点击过,则纯粹的统计CTR=0.0,这显然是过分低估了。

假设

1、假设一,所有的广告有一个自身的转化率,这些转化率服从一个Beta分布。
2、假设二,对于某一广告,每次点击服从一个伯努利分布
3、然后用梯度下降(或者矩估计、EM)来学习这个分布。

数据的连续性

在很多场景下,我们更关心CTR的趋势,而不是一个特定时间点的CTR值。因为对于展示量较少的page-ad pair,某个特定时间点的CTR预估值是包含很大噪声的。我们将展现和点击看做是离散集合的重复观测值,然后使用指数平滑技术进行CTR平滑。

上述的两种方法:
(1)数据层级结构的贝叶斯平滑
(2)时间窗口的指数平滑

可以结合使用。

数据层级结构的贝叶斯平滑方法代码实现

参考:贝叶斯平滑方法及其代码实现

import numpy
import random
import scipy.special as specialclass BayesianSmoothing(object):def __init__(self, alpha, beta):self.alpha = alphaself.beta = betadef sample(self, alpha, beta, num, imp_upperbound):sample = numpy.random.beta(alpha, beta, num)I = []C = []for clk_rt in sample:imp = random.random() * imp_upperboundimp = imp_upperboundclk = imp * clk_rtI.append(imp)C.append(clk)return I, Cdef update(self, imps, clks, iter_num, epsilon):for i in range(iter_num):new_alpha, new_beta = self.__fixed_point_iteration(imps, clks, self.alpha, self.beta)if abs(new_alpha-self.alpha)<epsilon and abs(new_beta-self.beta)<epsilon:breakself.alpha = new_alphaself.beta = new_betadef __fixed_point_iteration(self, imps, clks, alpha, beta):numerator_alpha = 0.0numerator_beta = 0.0denominator = 0.0for i in range(len(imps)):numerator_alpha += (special.digamma(clks[i]+alpha) - special.digamma(alpha))numerator_beta += (special.digamma(imps[i]-clks[i]+beta) - special.digamma(beta))denominator += (special.digamma(imps[i]+alpha+beta) - special.digamma(alpha+beta))return alpha*(numerator_alpha/denominator), beta*(numerator_beta/denominator)def test():bs = BayesianSmoothing(1, 1)I, C = bs.sample(500, 500, 1000, 10000)print(I, C)bs.update(I, C, 1000, 0.0000000001)print(bs.alpha, bs.beta)if __name__ == '__main__':bs = BayesianSmoothing(1, 1)I, C = bs.sample(500, 500, 10, 1000)print(I, C)bs.update(I, C, 1000, 0.0000000001)print(bs.alpha, bs.beta)ctr = []for i in range(len(I)):ctr.append((C[i]+bs.alpha)/(I[i]+bs.alpha+bs.beta))print(ctr)'''# I-曝光; C-点击print(I, C)> [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000] > [500.66537369533404, 519.118192777798, 509.2683959053668, 513.1628148481445, 465.8559429325591, 475.0976379845914, 480.4238769950405, 525.6323802874903, 481.8433598927745, 498.4996934947687]print(ctr)> [0.5001831732387896, 0.516226595669197, 0.5076628932141996, 0.5110488153294465, 0.4699188326091272, 0.4779538334959924, 0.48258462199655033, 0.5218902214567709, 0.4838187620842689, 0.4983002673179344]'''

贝叶斯平滑方法参数估计和代码实现

CTR预估中的贝叶斯平滑方法(二)参数估计和代码实现

这篇关于[转载] CTR预估中的贝叶斯平滑方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518453

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行