[转载] CTR预估中的贝叶斯平滑方法

2023-12-21 03:08

本文主要是介绍[转载] CTR预估中的贝叶斯平滑方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:CTR预估中的贝叶斯平滑方法(一)原理及实验介绍、贝叶斯平滑

文章目录

    • 竞价模式:
    • 遇到的困难:
    • 假设
    • 数据的连续性
    • 数据层级结构的贝叶斯平滑方法代码实现
    • 贝叶斯平滑方法参数估计和代码实现


竞价模式:

对于在线广告,主要有以下几种竞价模式:

  • 1)pay-per-impression(按展示付费):广告商按照广告被展示的次数付费,这是一种最普遍的竞价模型。缺点在于没有考虑投放广告的效果。
  • 2)pay-per-action(按行为付费):只有在广告产生了销售或者类似的一些转化时,广告商才付费。缺点在于追踪用户的交易行为相对比较困难。
  • 3)pay-per-click(按用户点击付费):根据用户是否会点击广告来付费。这时候就需要对广告的点击率(CTR)进行精确的预估。

遇到的困难:

由于数据的稀疏性,对广告进行CTR预估是比较具有挑战性的,预估出来的CTR的可靠性不高,且具有较大的方差。主要有以下两类场景:

  • 1)当广告的展示次数较少的时候,对其直接进行CTR的统计计算会导致一个偏高的结果。比如某个广告只展示了1次,被点击了1次,则纯粹的统计CTR=1.0,这显然是过分高估了。
  • 2)当广告的展示次数很大,但点击次数很少或几乎没有的时候,对其直接进行CTR的统计计算会导致一个偏低的结果。比如某个广告没有被点击过,则纯粹的统计CTR=0.0,这显然是过分低估了。

假设

1、假设一,所有的广告有一个自身的转化率,这些转化率服从一个Beta分布。
2、假设二,对于某一广告,每次点击服从一个伯努利分布
3、然后用梯度下降(或者矩估计、EM)来学习这个分布。

数据的连续性

在很多场景下,我们更关心CTR的趋势,而不是一个特定时间点的CTR值。因为对于展示量较少的page-ad pair,某个特定时间点的CTR预估值是包含很大噪声的。我们将展现和点击看做是离散集合的重复观测值,然后使用指数平滑技术进行CTR平滑。

上述的两种方法:
(1)数据层级结构的贝叶斯平滑
(2)时间窗口的指数平滑

可以结合使用。

数据层级结构的贝叶斯平滑方法代码实现

参考:贝叶斯平滑方法及其代码实现

import numpy
import random
import scipy.special as specialclass BayesianSmoothing(object):def __init__(self, alpha, beta):self.alpha = alphaself.beta = betadef sample(self, alpha, beta, num, imp_upperbound):sample = numpy.random.beta(alpha, beta, num)I = []C = []for clk_rt in sample:imp = random.random() * imp_upperboundimp = imp_upperboundclk = imp * clk_rtI.append(imp)C.append(clk)return I, Cdef update(self, imps, clks, iter_num, epsilon):for i in range(iter_num):new_alpha, new_beta = self.__fixed_point_iteration(imps, clks, self.alpha, self.beta)if abs(new_alpha-self.alpha)<epsilon and abs(new_beta-self.beta)<epsilon:breakself.alpha = new_alphaself.beta = new_betadef __fixed_point_iteration(self, imps, clks, alpha, beta):numerator_alpha = 0.0numerator_beta = 0.0denominator = 0.0for i in range(len(imps)):numerator_alpha += (special.digamma(clks[i]+alpha) - special.digamma(alpha))numerator_beta += (special.digamma(imps[i]-clks[i]+beta) - special.digamma(beta))denominator += (special.digamma(imps[i]+alpha+beta) - special.digamma(alpha+beta))return alpha*(numerator_alpha/denominator), beta*(numerator_beta/denominator)def test():bs = BayesianSmoothing(1, 1)I, C = bs.sample(500, 500, 1000, 10000)print(I, C)bs.update(I, C, 1000, 0.0000000001)print(bs.alpha, bs.beta)if __name__ == '__main__':bs = BayesianSmoothing(1, 1)I, C = bs.sample(500, 500, 10, 1000)print(I, C)bs.update(I, C, 1000, 0.0000000001)print(bs.alpha, bs.beta)ctr = []for i in range(len(I)):ctr.append((C[i]+bs.alpha)/(I[i]+bs.alpha+bs.beta))print(ctr)'''# I-曝光; C-点击print(I, C)> [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000] > [500.66537369533404, 519.118192777798, 509.2683959053668, 513.1628148481445, 465.8559429325591, 475.0976379845914, 480.4238769950405, 525.6323802874903, 481.8433598927745, 498.4996934947687]print(ctr)> [0.5001831732387896, 0.516226595669197, 0.5076628932141996, 0.5110488153294465, 0.4699188326091272, 0.4779538334959924, 0.48258462199655033, 0.5218902214567709, 0.4838187620842689, 0.4983002673179344]'''

贝叶斯平滑方法参数估计和代码实现

CTR预估中的贝叶斯平滑方法(二)参数估计和代码实现

这篇关于[转载] CTR预估中的贝叶斯平滑方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518453

相关文章

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复