本文主要是介绍指数衰减-Exponential Decay,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Exponential decay is the decrease in a quantity N according to the law
N ( t ) = N 0 e − λ t , ( 1 ) N(t)=N_{0}e^{-\lambda t} , (1) N(t)=N0e−λt,(1)
for a parameter t and constant lambda (known as the decay constant), where e x e^{x} ex is the exponential function and N_{0}=N(0) is the initial value. Exponential decay is common in physical processes such as radioactive decay, cooling in a draft (i.e., by forced convection), and so on. Exponential decay is described by the first-order ordinary differential equation
d N d t = − λ N , ( 2 ) \frac{dN}{dt}=-\lambda N, (2) dtdN=−λN,(2)
which can be rearranged to
d N N = − λ N , ( 3 ) \frac{dN}{N}= -\lambda N, (3) NdN=−λN,(3)
Integrating both sides then gives
ln ( N N 0 ) = − λ t , ( 4 ) \ln(\frac{N}{N_{0}})=-\lambda t, (4) ln(N0N)=−λt,(4)
and exponentiating both sides yields the functional form (1).
See https://mathworld.wolfram.com/ExponentialDecay.html
这篇关于指数衰减-Exponential Decay的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!