ELMO原理介绍

2023-12-20 10:48
文章标签 介绍 原理 elmo

本文主要是介绍ELMO原理介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ELMO原理介绍

  • 一、引言
    • 1.1 从Word Embedding到ELMO
  • 二、ELMO
    • 2.1 ELMO原理
    • 2.2 ELMO 训练
      • 2.2.1 第一阶段 语言模型进行预训练
      • 2.2.2 第二阶段 接入下游NLP任务
    • 2.3 ELMO效果

一、引言

1.1 从Word Embedding到ELMO

Word Embedding:词嵌入。最简单粗劣的理解就是:将词进行向量化表示,实体的抽象成了数学描述,就可以进行建模,应用到很多任务中。之前用语言模型做Word Embedding比较火的是word2vec(上篇博客讲到)和glove。使用Word2Vec或者Glove,通过做语言模型任务,就可以获得每个单词的Word Embedding,但是Word Embedding无法解决多义词的问题,同一个词在不同的上下文中表示不同的意思,但是在Word Embedding中一个词只有一个表示,这导致两种不同的上下文信息都会编码到相同的word embedding空间里去。如何根据句子上下文来进行单词的Word Embedding表示。ELMO提供了解决方案。

二、ELMO

2.1 ELMO原理

ELMO是“Embedding from Language Models”的简称,其实这个名字并没有反应它的本质思想,提出ELMO的论文题目:“Deep contextualized word representation”更能体现其精髓,而精髓在哪里?在deep contextualized这个短语,一个是deep,一个是context,其中context更关键。在此之前的Word Embedding本质上是个静态的方式,所谓静态指的是训练好之后每个单词的表达就固定住了,以后使用的时候,不论新句子上下文单词是什么,这个单词的Word Embedding不会跟着上下文场景的变化而改变,所以对于比如Bank这个词,它事先学好的Word Embedding中混合了几种语义 ,在应用中来了个新句子,即使从上下文中(比如句子包含money等词)明显可以看出它代表的是“银行”的含义,但是对应的Word Embedding内容也不会变,它还是混合了多种语义。这是为何说它是静态的,这也是问题所在。ELMO的本质思想是:我事先用语言模型学好一个单词的Word Embedding,此时多义词无法区分,不过这没关系。在我实际使用Word Embedding的时候,单词已经具备了特定的上下文了,这个时候我可以根据上下文单词的语义去调整单词的Word Embedding表示,这样经过调整后的Word Embedding更能表达在这个上下文中的具体含义,自然也就解决了多义词的问题了。所以ELMO本身是个根据当前上下文对Word Embedding动态调整的思路。

2.2 ELMO 训练

2.2.1 第一阶段 语言模型进行预训练

ELMO采用了典型的两阶段过程,第一个阶段是利用语言模型进行预训练;第二个阶段是在做下游任务时,从预训练网络中提取对应单词的网络各层的Word Embedding作为新特征补充到下游任务中。下图展示的是其预训练过程,它的网络结构采用了双层双向LSTM,目前语言模型训练的任务目标是根据单词 W i W_{i} Wi 的上下文去正确预测单词 W i W_{i} Wi W i W_{i} Wi之前的单词序列Context-before称为上文,之后的单词序列Context-after称为下文。图中左端的前向双层LSTM代表正方向编码器,输入的是从左到右顺序的除了预测单词外 W i W_{i} Wi 的上文Context-before;右端的逆向双层LSTM代表反方向编码器,输入的是从右到左的逆序的句子下文Context-after;每个编码器的深度都是两层LSTM叠加。这个网络结构其实在NLP中是很常用的。使用这个网络结构利用大量语料做语言模型任务就能预先训练好这个网络,如果训练好这个网络后,输入一个新句子 S n e w S_{new} Snew ,句子中每个单词都能得到对应的三个Embedding:最底层是单词的Word Embedding,往上走是第一层双向LSTM中对应单词位置的Embedding,这层编码单词的句法信息更多一些;再往上走是第二层LSTM中对应单词位置的Embedding,这层编码单词的语义信息更多一些。也就是说,ELMO的预训练过程不仅仅学会单词的Word Embedding,还学会了一个双层双向的LSTM网络结构,而这两者后面都有用。
在这里插入图片描述

2.2.2 第二阶段 接入下游NLP任务

上面介绍的是ELMO的第一阶段:预训练阶段。那么预训练好网络结构后,如何给下游任务使用呢?下图展示了下游任务的使用过程,比如我们的下游任务仍然是QA问题,此时对于问句X,我们可以先将句子X作为预训练好的ELMO网络的输入,这样句子X中每个单词在ELMO网络中都能获得对应的三个Embedding,之后给予这三个Embedding中的每一个Embedding一个权重a,这个权重可以学习得来,根据各自权重累加求和,将三个Embedding整合成一个。然后将整合后的这个Embedding作为X句在自己任务的那个网络结构中对应单词的输入,以此作为补充的新特征给下游任务使用。对于下图所示下游任务QA中的回答句子Y来说也是如此处理。因为ELMO给下游提供的是每个单词的特征形式,所以这一类预训练的方法被称为“Feature-based Pre-Training”。
在这里插入图片描述

2.3 ELMO效果

前面我们提到静态Word Embedding无法解决多义词的问题,那么ELMO引入上下文动态调整单词的embedding后多义词问题解决了吗?解决了,而且比我们期待的解决得还要好。下图给了个例子,对于Glove训练出的Word Embedding来说,多义词比如play,根据它的embedding找出的最接近的其它单词大多数集中在体育领域,这很明显是因为训练数据中包含play的句子中体育领域的数量明显占优导致;而使用ELMO,根据上下文动态调整后的embedding不仅能够找出对应的“演出”的相同语义的句子,而且还可以保证找出的句子中的play对应的词性也是相同的,这是超出期待之处。之所以会这样,是因为我们上面提到过,第一层LSTM编码了很多句法信息,这在这里起到了重要作用。
在这里插入图片描述
ELMO经过这般操作,效果如何呢?实验效果见下图,6个NLP任务中性能都有幅度不同的提升,最高的提升达到25%左右,而且这6个任务的覆盖范围比较广,包含句子语义关系判断,分类任务,阅读理解等多个领域,这说明其适用范围是非常广的,普适性强,这是一个非常好的优点。
在这里插入图片描述

这篇关于ELMO原理介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515757

相关文章

揭秘未来艺术:AI绘画工具全面介绍

📑前言 随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面。在艺术创作领域,AI技术同样展现出了其独特的魅力。今天,我们就来一起探索这个神秘而引人入胜的领域,深入了解AI绘画工具的奥秘及其为艺术创作带来的革命性变革。 一、AI绘画工具的崛起 1.1 颠覆传统绘画模式 在过去,绘画是艺术家们通过手中的画笔,蘸取颜料,在画布上自由挥洒的创造性过程。然而,随着AI绘画工

20.Spring5注解介绍

1.配置组件 Configure Components 注解名称说明@Configuration把一个类作为一个loC容 器 ,它的某个方法头上如果注册7@Bean , 就会作为这个Spring容器中的Bean@ComponentScan在配置类上添加@ComponentScan注解。该注解默认会扫描该类所在的包下所有的配置类,相当于之前的 <context:component-scan>@Sc

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库

计算机组成原理——RECORD

第一章 概论 1.固件  将部分操作系统固化——即把软件永恒存于只读存储器中。 2.多级层次结构的计算机系统 3.冯*诺依曼计算机的特点 4.现代计算机的组成:CPU、I/O设备、主存储器(MM) 5.细化的计算机组成框图 6.指令操作的三个阶段:取指、分析、执行 第二章 计算机的发展 1.第一台由电子管组成的电子数字积分和计算机(ENIAC) 第三章 系统总线

GaussDB关键技术原理:高性能(二)

GaussDB关键技术原理:高性能(一)从数据库性能优化系统概述对GaussDB的高性能技术进行了解读,本篇将从查询处理综述方面继续分享GaussDB的高性能技术的精彩内容。 2 查询处理综述 内容概要:本章节介绍查询端到端处理的执行流程,首先让读者对查询在数据库内部如何执行有一个初步的认识,充分理解查询处理各阶段主要瓶颈点以及对应的解决方案,本章以GaussDB为例讲解查询执行的几个主要阶段

C++标准模板库STL介绍

STL的六大组成部分 STL(Standard Template Library)是 C++ 标准库中的一个重要组成部分,提供了丰富的通用数据结构和算法,使得 C++ 编程变得更加高效和方便。STL 包括了 6 大类组件,分别是算法(Algorithm)、容器(Container)、空间分配器(Allocator)、迭代器(Iterator)、函数对象(Functor)、适配器(Adapter)

【计算机组成原理】部分题目汇总

计算机组成原理 部分题目汇总 一. 简答题 RISC和CICS 简要说明,比较异同 RISC(精简指令集)注重简单快速的指令执行,使用少量通用寄存器,固定长度指令,优化硬件性能,依赖软件(如编译器)来提升效率。 CISC(复杂指令集)包含多样复杂的指令,能一条指令完成多步操作,采用变长指令,减少指令数但可能增加执行时间,倾向于硬件直接支持复杂功能减轻软件负担。 两者均追求高性能,但RISC

MySQL数据库锁的实现原理

MySQL数据库的锁实现原理主要涉及到如何确保在多用户并发访问数据库时,保证数据的完整性和一致性。以下是MySQL数据库锁实现原理的详细解释: 锁的基本概念和目的 锁的概念:在数据库中,锁是用于管理对公共资源的并发控制的机制。当多个用户或事务试图同时访问或修改同一数据时,数据库系统通过加锁来确保数据的一致性和完整性。 锁的目的:解决多用户环境下保证数据库完整性和一致性的问题。在并发的情况下,会

线性回归(Linear Regression)原理详解及Python代码示例

一、线性回归原理详解         线性回归是一种基本的统计方法,用于预测因变量(目标变量)与一个或多个自变量(特征变量)之间的线性关系。线性回归模型通过拟合一条直线(在多变量情况下是一条超平面)来最小化预测值与真实值之间的误差。 1. 线性回归模型         对于单变量线性回归,模型的表达式为:         其中: y是目标变量。x是特征变量。β0是截距项(偏置)。β1

标准分幅下的图幅号转换成经纬度坐标【原理+源代码】

最近要批量的把标准分幅下的图幅号转换成经纬度坐标,所以这两天写了个程序来搞定这件事情。 先举个例子说明一下这个程序的作用。 例如:计算出图幅号I50G021040的经纬度范围,即最大经度、最小经度、最大纬度、最小纬度。 运用我编写的这个程序,可以直接算出来,这个图幅号的经纬度范围,最大经度为115.3125°,最小经度为115.25°,最大纬度为31.167°,最小纬度为31.125°。