将Numpy加速700倍——CuPy

2023-12-20 05:48
文章标签 加速 numpy 700 cupy

本文主要是介绍将Numpy加速700倍——CuPy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

就其自身来说,Numpy 的速度已经较 Python 有了很大的提升。当你发现 Python 代码运行较慢,尤其出现大量的 for-loops 循环时,通常可以将数据处理移入 Numpy 并实现其向量化最高速度处理。

但有一点,上述 Numpy 加速只是在 CPU 上实现的。由于消费级 CPU 通常只有 8 个核心或更少,所以并行处理数量以及可以实现的加速是有限的。

这就催生了新的加速工具——CuPy 库。

何为 CuPy?

在这里插入图片描述

CuPy 是一个借助 CUDA GPU 库在英伟达 GPU 上实现 Numpy 数组的库。基于 Numpy 数组的实现,GPU 自身具有的多个 CUDA 核心可以促成更好的并行加速。

CuPy 接口是 Numpy 的一个镜像,并且在大多情况下,它可以直接替换 Numpy 使用。只要用兼容的 CuPy 代码替换 Numpy 代码,用户就可以实现 GPU 加速。

CuPy 支持 Numpy 的大多数数组运算,包括索引、广播、数组数学以及各种矩阵变换。

如果遇到一些不支持的特殊情况,用户也可以编写自定义 Python 代码,这些代码会利用到 CUDA 和 GPU 加速。整个过程只需要 C++格式的一小段代码,然后 CuPy 就可以自动进行 GPU 转换,这与使用 Cython 非常相似。

在开始使用 CuPy 之前,用户可以通过 pip 安装 CuPy 库:

pip install cupy

使用 CuPy 在 GPU 上运行

为符合相应基准测试,PC 配置如下:

i7–8700k CPU

1080 Ti GPU

32 GB of DDR4 3000MHz RAM

CUDA 9.0

CuPy 安装之后,用户可以像导入 Numpy 一样导入 CuPy:

import numpy as np
import cupy as cp
import time

在接下来的编码中,Numpy 和 CuPy 之间的切换就像用 CuPy 的 cp 替换 Numpy 的 np 一样简单。如下代码为 Numpy 和 CuPy 创建了一个具有 10 亿 1』s 的 3D 数组。为了测量创建数组的速度,用户可以使用 Python 的原生 time 库:

### Numpy and CPU
s = time.time()
*x_cpu = np.ones((1000,1000,1000))*
e = time.time()
print(e - s)### CuPy and GPU
s = time.time()
*x_gpu = cp.ones((1000,1000,1000))*
e = time.time()
print(e - s)

这很简单!

令人难以置信的是,即使以上只是创建了一个数组,CuPy 的速度依然快得多。Numpy 创建一个具有 10 亿 1』s 的数组用了 1.68 秒,而 CuPy 仅用了 0.16 秒,实现了 10.5 倍的加速。

但 CuPy 能做到的还不止于此。

比如在数组中做一些数学运算。这次将整个数组乘以 5,并再次检查 Numpy 和 CuPy 的速度。

### Numpy and CPU
s = time.time()
*x_cpu *= 5*
e = time.time()
print(e - s)### CuPy and GPU
s = time.time()
*x_gpu *= 5*
e = time.time()
print(e - s)

果不其然,CuPy 再次胜过 Numpy。Numpy 用了 0.507 秒,而 CuPy 仅用了 0.000710 秒,速度整整提升了 714.1 倍。

现在尝试使用更多数组并执行以下三种运算:

数组乘以 5

数组本身相乘

数组添加到其自身

### Numpy and CPU
s = time.time()
*x_cpu *= 5
x_cpu *= x_cpu
x_cpu += x_cpu*
e = time.time()
print(e - s)### CuPy and GPU
s = time.time()
*x_gpu *= 5
x_gpu *= x_gpu
x_gpu += x_gpu*
e = time.time()
print(e - s)

结果显示,Numpy 在 CPU 上执行整个运算过程用了 1.49 秒,而 CuPy 在 GPU 上仅用了 0.0922 秒,速度提升了 16.16 倍。

数组大小(数据点)达到 1000 万,运算速度大幅度提升

使用 CuPy 能够在 GPU 上实现 Numpy 和矩阵运算的多倍加速。值得注意的是,用户所能实现的加速高度依赖于自身正在处理的数组大小。下表显示了不同数组大小(数据点)的加速差异:

数据点一旦达到 1000 万,速度将会猛然提升;超过 1 亿,速度提升极为明显。Numpy 在数据点低于 1000 万时实际运行更快。此外,GPU 内存越大,处理的数据也就更多。所以用户应当注意,GPU 内存是否足以应对 CuPy 所需要处理的数据。

原文链接:https://towardsdatascience.com/heres-how-to-use-cupy-to-make-numpy-700x-faster-4b920dda1f56

这篇关于将Numpy加速700倍——CuPy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514943

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

探索Python的数学魔法:Numpy库的神秘力量

文章目录 探索Python的数学魔法:Numpy库的神秘力量背景:为什么选择Numpy?Numpy是什么?如何安装Numpy?五个简单的库函数使用方法场景应用常见Bug及解决方案总结 探索Python的数学魔法:Numpy库的神秘力量 背景:为什么选择Numpy? 在Python的世界中,数据处理和科学计算是不可或缺的一部分。但原生Python在处理大规模数据时可能会显

机器人助力上下料搬运,加速仓库转运自动化

近年来,国内制造业领域掀起了一股智能化改造的浪潮,众多工厂纷纷采纳富唯智能提供的先进物流解决方案,这一举措显著优化了生产流程,实现了生产效率的飞跃式增长。得益于这些成功案例,某信息技术服务企业在工厂智能物流建设的进程中,也选择了与富唯智能合作。 为了应对日益增长的物料搬运需求,匹配成品输出节拍,该公司引入了富唯智能复合机器人AMR与搬运机器人AGV,实现了仓库成品搬运自动化,大幅减少人工

Numpy random.random()函数补充

np.random.random() np.random.random()的作用是生成指定形状的均匀分布的值为[0,1)的随机数 参数为size,也就是用于指定的形状大小 import numpy as npprint(np.random.random(size=(2, 2)))# [[0.19671797 0.85492315]# [0.99609539 0.66437246]]

ACM比赛中如何加速c++的输入输出?如何使cin速度与scanf速度相当?什么是最快的输入输出方法?

在竞赛中,遇到大数据时,往往读文件成了程序运行速度的瓶颈,需要更快的读取方式。相信几乎所有的C++学习者都在cin机器缓慢的速度上栽过跟头,于是从此以后发誓不用cin读数据。还有人说Pascal的read语句的速度是C/C++中scanf比不上的,C++选手只能干着急。难道C++真的低Pascal一等吗?答案是不言而喻的。一个进阶的方法是把数据一下子读进来,然后再转化字符串,这种方法传说中

解决RuntimeError: Numpy is not available

运行项目时,遇到RuntimeError: Numpy is not available 这是因为Numpy 版本太高,将现有Numpy卸载 pip uninstall numpy 安装numpy=1.26.4,解决此问题 pip install numpy=1.26.4 -i https://pypi.tuna.tsinghua.edu.cn/simple