Field Regions 关于近场和阵列面积等效孔径

2023-12-20 04:04

本文主要是介绍Field Regions 关于近场和阵列面积等效孔径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写自定义目录标题

  • 2.2.4 Field Regions(Page 33)
  • 2.15.2 Antenna Equivalent Areas

本文内容来自天线圣经

在这里插入图片描述

2.2.4 Field Regions(Page 33)

D D D is the largest dimension of the antenna. D D D是天线阵最大的物理尺寸。 可以直观地理解为天线阵的最大物理尺寸越大,从天线阵的相隔最远的两个阵元发出的电磁波的差别越大,从而接收端的相位不具有一致性,从而影响远场区。

The space surrounding an antenna is usually subdivided into three regions: (a) reactive near-field, (b) radiating near-field (Fresnel) and © far-field (Fraunhofer) regions as shown in Figure 2.7. These regions are so designated to identify the field structure in each. Although no abrupt changes in the field configurations are noted as the boundaries are crossed, there are distinct differences among them. The boundaries separating these regions are not unique, although various criteria have been established and are commonly used to identify the regions.

在这里插入图片描述
Reactive near-field region is defined as “that portion of the near-field region immediately surrounding the antenna wherein the reactive field predominates.” For most antennas, the outer boundary of this region is commonly taken to exist at a distance R < 0.62 D 3 / λ R<0.62 \sqrt{D^{3} / \lambda} R<0.62D3/λ from the antenna surface, where \lambda is the wavelength and D D D is the largest dimension of the antenna. “For a very short dipole, or equivalent radiator, the outer boundary is commonly taken to exist at a distance λ / 2 π \lambda / 2 \pi λ/2π from the antenna surface.”

Radiating near-field (Fresnel) region is defined as “that region of the field of an antenna between the reactive near-field region and the far-field region wherein radiation fields predominate and wherein the angular field distribution is dependent upon the distance from the antenna. If the antenna has a maximum dimension that is not large compared to the wavelength, this region may not exist. For an antenna focused at infinity, the radiating near-field region is sometimes referred to as the Fresnel region on the basis of analogy to optical terminology. If the antenna has a maximum overall dimension which is very small compared to the wavelength, this field region may not exist.” The inner boundary is taken to be the distance R ≥ 0.62 D 3 / λ R \geq 0.62 \sqrt{D^{3} / \lambda} R0.62D3/λ and the outer boundary the distance R < 2 D 2 / λ R<2 D^{2} / \lambda R<2D2/λ where D D D is the largest* dimension of the antenna. This criterion is based on a maximum phase error of π / 8 \pi / 8 π/8 . In this region the field pattern is, in general, a function of the radial distance and the radial field component may be appreciable.

To be valid, D D D must also be large compared to the wavelength ( D > λ D > λ D>λ).

Far-field (Fraunhofer) region is defined as "that region of the field of an antenna where the angular field distribution is essentially independent of the distance from the antenna. If the antenna has a maximum † ^{\dagger} overall dimension D D D , the far-field region is commonly taken to exist at distances greater than 2 D 2 / λ 2 D^{2} / \lambda 2D2/λ from the antenna, \lambda being the wavelength. The far-field patterns of certain antennas, such as multibeam reflector antennas, are sensitive to variations in phase over their apertures. For these antennas 2 D 2 / λ 2 D^{2} / \lambda 2D2/λ may be inadequate. In physical media, if the antenna has a maximum overall dimension, D D D , which is large compared to π / ∣ γ ∣ \pi /|\gamma| π/∣γ , the far-field region can be taken to begin approximately at a distance equal to ∣ γ ∣ D 2 / π |\gamma| D^{2} / \pi γD2/π from the antenna, γ \gamma γ being the propagation constant in the medium. For an antenna focused at infinity, the far-field region is sometimes referred to as the Fraunhofer region on the basis of analogy to optical terminology." In this region, the field components are essentially transverse and the angular distribution is independent of the radial distance where the measurements are made. The inner boundary is taken to be the radial distance R = 2 D 2 / λ R=2 D^{2} / \lambda R=2D2/λ and the outer one at infinity.

The amplitude pattern of an antenna, as the observation distance is varied from the reactive near field to the far field, changes in shape because of variations of the fields, both magnitude and phase. A typical progression of the shape of an antenna, with the largest dimension D D D , is shown in Figure 2.8.It is apparent that in the reactive near-field region the pattern is more spread out and nearly uniform, with slight variations. As the observation is moved to the radiating near-field region (Fresnel), the pattern begins to smooth and form lobes. In the far-field region (Fraunhofer), the pattern is well formed, usually consisting of few minor lobes and one, or more, major lobes.

To illustrate the pattern variation as a function of radial distance beyond the minimum 2 D 2 / λ 2 D^{2} / \lambda 2D2/λ far-field distance, in Figure 2.9 we have included three patterns of a parabolic reflector calculated at distances of R = 2 D 2 / λ , 4 D 2 / λ R=2 D^{2} / \lambda, 4 D^{2} / \lambda R=2D2/λ,4D2/λ , and infinity [4]. It is observed that the patterns are almost identical, except for some differences in the pattern structure around the first null and at a level below 25 d B 25 \mathrm{~dB} 25 dB . Because infinite distances are not realizable in practice, the most commonly used criterion for minimum distance of far-field observations is 2 D 2 / λ 2 D^{2} / \lambda 2D2/λ .

在这里插入图片描述

2.15.2 Antenna Equivalent Areas

With each antenna, we can associate a number of equivalent areas. These are used to describe the power capturing characteristics of the antenna when a wave impinges on it. One of these equivalent areas is the effective area (aperture), which in a given direction is defined as “the ratio of the available power at the terminals of a receiving antenna to the power flux density of a plane wave incident on the antenna from that direction, the wave being polarization-matched to the antenna. If the direction is not specified, the direction of maximum radiation intensity is implied.” In equation form it is written as

对于每个天线,我们可以关联一些等价的区域。这些被用来描述当波冲击天线时天线的功率捕获特性。这些等效区域之一是有效区域(孔径),在一个给定的方向被定义为“接收天线的终端可用功率与天线的功率通量密度的比例,波被天线匹配。如果没有指定辐射方向,则暗示了最大辐射强度的方向。”用方程的形式写成
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Field Regions 关于近场和阵列面积等效孔径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514713

相关文章

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

利用向量积(叉积)计算三角形的面积和多边形的面积(hdu2036)

开始撸计算几何题目了。。。。。。。 预备知识:叉乘求多边形面积 参考证明资料: 公式证明: http://www.cnblogs.com/xiexinxinlove/p/3708147.html 高中知识: http://wenku.baidu.com/view/867e6edfad51f01dc281f11a.html #include<stdio.h>#inclu

百度之星初赛1006(计算几何:能包含凸包的最小矩形面积)

矩形面积    Accepts: 717    Submissions: 1619  Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些

HDU 2036 求多边形面积

题目: http://acm.hdu.edu.cn/showproblem.php?pid=2036 对用(按逆时针排列)描述的多边形,其面积为: 若按顺时针排列,取负数即可。 资料链接: http://zh.wikipedia.org/wiki/%E5%A4%9A%E8%BE%B9%E5%BD%A2 不知道这公式是咋推导的,网上找不到,先留着。 #

JD 1497:面积最大的全1子矩阵

OJ题目:click here~~ 题目分析:经典题目。。 const int maxn = 1008 ;int n , m ;int x[maxn][maxn] ;int h[maxn] , Left[maxn] , Right[maxn] ;void check(int &a , int b){if(b > a) a = b ;}void all_1_matrix()

【spring】does not have member field ‘com.sun.tools.javac.tree.JCTree qualid

spring-in-action-6-samples 的JDK版本 最小是11,我使用 了22: jdk21 jdk22 都与lombok 不兼容,必须使用兼容版本, 否则报错: thingsboard 的大神解释了: java: java.lang.NoSuchFieldError: Class com

Halcon选择一堆region中面积第N大的region的算法实现

以下图为例: 比如我想把面积第2小的那个“小正方形”选择出来,算法代码如下: 1 read_image (Yuan, 'C:/Users/happy xia/Desktop/yuan.png')2 binary_threshold (Yuan, Region, 'max_separability', 'dark', UsedThreshold)3 connection (Regio

OpenCV结构分析与形状描述符(7)计算轮廓的面积的函数contourArea()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 计算轮廓的面积。 该函数计算轮廓的面积。与 moments 类似,面积是使用格林公式计算的。因此,返回的面积与你使用 drawContours 或 fillPoly 绘制轮廓时的非零像素数量可能会不同。此外,对于自相交的轮廓,该函数很可能会给

图论篇--代码随想录算法训练营第五十一天打卡| 99. 岛屿数量(深搜版),99. 岛屿数量(广搜版),100. 岛屿的最大面积

99. 岛屿数量(深搜版) 题目链接:99. 岛屿数量 题目描述: 给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。 解题思路: 1、每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 2、遇到一个没有遍历过的节点陆地,计数器就加一,然后把该节点陆地所能遍历到的陆地都

SOC 阵列:创新算力的未来之路

一、SOC阵列的概念与发展历程 SOC 阵列是由多个特定功能集成电路组合在一个芯片上的系统或产品,包含硬件系统及嵌入式软件。从传统集成电路到 SOC 经历多个阶段,初期电路由分立元件组成,后集成到单芯片集成电路中,其发展遵循摩尔定律,从 SSI 到 MSI、LSI 再到代表 VLSI 的 SOC 阵列。SOC 阵列在电子系统中地位凸显,实现小型化、提高效率、降低功耗和整体性能,如在便携设备中使设