灵巧手操作模仿学习:DexMV

2023-12-19 19:28

本文主要是介绍灵巧手操作模仿学习:DexMV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DexMV: Imitation Learning for Dexterous Manipulation from Human Videos解析

  • 摘要
  • 1. 简介
  • 2. 相关工作
    • 2.1 Dexterous Manipulation(灵巧操作)
    • 2.2 Imitation Learning from Human Demonstrations(从人类示范中模仿学习)
    • 2.3 Following Human Demonstrations(跟随人类示范)
    • 2.4 Hand-Object Interaction(手物交互)
  • 3. Overview
  • 4. DexMV Platform
    • 4.1 计算机视觉系统
    • 4.2 仿真系统
    • 4.3 任务描述
  • 5. 姿态估计
    • 5.1 物体姿态估计
    • 5.2 手姿态估计
    • 6. 演示转换(demonstration translation)
    • 6.1 Hand Motion Retargeting
    • 6.2 Robot Action Estimation
    • 7. Imitation Learning

Manipulation from Human Videos解析)

论文链接:https://arxiv.org/abs/2108.05877
项目网址:https://yzqin.github.io/dexmv/
论文代码:https://github.com/yzqin/dexmv-sim
论文出处:2022 ECCV
论文单位:加州大学圣迭戈分校

在这里插入图片描述
图1. 我们记录了关于操作任务的人类视频(第一行),并从视频(第二行)中执行3D手-对象姿态估计来构建演示。我们有一个配对的模拟系统,为多指机器人(第三排)提供相同的灵巧操作任务,包括:relocate, pour, 和 place inside,我们可以使用模仿学习(imitation learning) with 推断演示(inferred demonstrations) 来解决这些问题。

摘要

  • 虽然计算机视觉在理解 手-物交互(hand-object interactions) 方面取得了重大进展,但对于机器人来说,进行复杂的灵巧操作仍然是非常具有挑战性的。

  • 本文提出了一种新的模仿学习平台和 pipeline DexMV (Dexterous Manipulation from Videos)

  • 我们设计了一个平台,其中包括:
    (i) 一个模拟系统,用于多手指机械手的复杂灵巧操作任务;
    (ii)一个计算机视觉系统,用于记录大规模演示人手执行相同任务。

  • 在我们的新 pipeline 中,我们从视频中提取3D手和物体的姿势,并提出了一种新的演示翻译方法,将人体运动转换为机器人演示。

  • 然后,我们应用和比较基准多个模仿学习算法的演示。

  • 我们表明,这些演示确实可以在很大程度上提高机器人的学习能力,并解决单独强化学习无法解决的复杂任务。

1. 简介

  • 灵巧地操纵物体是人类与物理世界互动的主要手段。人类在各种各样的日常任务中进行着灵

这篇关于灵巧手操作模仿学习:DexMV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/513408

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件