Apple Silicon M1 机器学习性能简单测试

2023-12-19 18:10

本文主要是介绍Apple Silicon M1 机器学习性能简单测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apple官方给tensorflow做了支持,使得带M1芯片的机器能用上硬件加速。本文将使用Macbook Air M1、2015 Macbook Pro 13” 以及Google提供的CoLab平台GPU和TPU进行测试对比。

测试方法

使用在tensorflow_macos项目Issues中Willian-Zhang提供的Benchmark: CNN脚本对以上平台分别测试,并计算运行完脚本所使用的总时间。脚本程序可以在github上获取,或者在本文末尾找到。

在运行脚本之前,需要先给macOS安装配置好conda环境及tensorflow配置,具体方法可参考文章:
《macOS M1(Apple Silicon) 安装配置 Conda 环境》

《macOS M1(AppleSilicon) 安装TensorFlow环境》

《macOS Intel(x86_64) 安装TensorFlow环境》

测试结果

在4个平台上测试的结果如下:
测试结果
可以从上图结果看到,Macbook Pro13 2015需要50多分钟才完成脚本,而M1的Macbook Air才用了约2分半钟,虽然比不上Colab GPU的84秒,但考虑到Colab的不稳定以及有地区的使用限制,综合来看,用AppleSIlicon的Mac来做简单的机器学习,也许是个挺不错的选择。

附1 - 测试脚本

import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
import time
from datetime import timedeltatf.enable_v2_behavior()from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()# 使用Colab或者其他平台,应注释一下这行
# 非AppleSilicon的Mac只要配置了Apple提供的tensorflow,可以正常运行不需要作修改
from tensorflow.python.compiler.mlcompute import mlcompute
mlcompute.set_mlc_device(device_name='gpu')(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., labelbatch_size = 128ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(batch_size)
ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE)ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_test = ds_test.batch(batch_size)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE)model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, kernel_size=(3, 3),
activation='relu'),
tf.keras.layers.Conv2D(64, kernel_size=(3, 3),
activation='relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
# tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
# tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=tf.keras.optimizers.Adam(0.001),
metrics=['accuracy'],
)start = time.time()model.fit(
ds_train,
epochs=10,
# validation_steps=1, 
# steps_per_epoch=469,
# validation_data=ds_test # 此处如果按原脚本添加这行,脚本无法运行,暂时未有解决方法
)delta = (time.time() - start)
elapsed = str(timedelta(seconds=delta))
print('Elapsed Time: {}'.format(elapsed))

附2 - 测试结果

# Macbook Air 2020 M12021-02-16 14:46:25.367705: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:196] None of the MLIR optimization passes are enabled (registered 0 passes)
2021-02-16 14:46:25.368515: W tensorflow/core/platform/profile_utils/cpu_utils.cc:126] Failed to get CPU frequency: 0 Hz
Train on None steps
Epoch 1/10
2021-02-16 14:46:25.721520: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.7121 - accuracy: 0.8496
Epoch 2/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.1144 - accuracy: 0.9731
Epoch 3/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0732 - accuracy: 0.9820
Epoch 4/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0546 - accuracy: 0.9858
Epoch 5/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0452 - accuracy: 0.9889
Epoch 6/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0371 - accuracy: 0.9907
Epoch 7/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0325 - accuracy: 0.9918
Epoch 8/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0272 - accuracy: 0.9937
Epoch 9/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0243 - accuracy: 0.9941
Epoch 10/10
469/469 [==============================] - 20s 40ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0209 - accuracy: 0.9957
Elapsed Time: 0:03:23.720809
# Macbook Pro 13 2015
2021-02-12 12:58:05.524324: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-02-12 12:58:05.524539: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-02-12 12:58:05.675857: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:196] None of the MLIR optimization passes are enabled (registered 0 passes)
Train on None steps
Epoch 1/10
2021-02-12 12:58:06.441954: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
469/469 [==============================] - 310s 652ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.1541 - accuracy: 0.9539
Epoch 2/10
469/469 [==============================] - 309s 649ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0400 - accuracy: 0.9878
Epoch 3/10
469/469 [==============================] - 312s 656ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0252 - accuracy: 0.9920
Epoch 4/10
469/469 [==============================] - 312s 655ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0183 - accuracy: 0.9938
Epoch 5/10
469/469 [==============================] - 306s 642ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0127 - accuracy: 0.9959
Epoch 6/10
469/469 [==============================] - 306s 642ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0091 - accuracy: 0.9971
Epoch 7/10
469/469 [==============================] - 306s 642ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0083 - accuracy: 0.9973
Epoch 8/10
469/469 [==============================] - 311s 655ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0050 - accuracy: 0.9982
Epoch 9/10
469/469 [==============================] - 312s 655ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0046 - accuracy: 0.9986
Epoch 10/10
469/469 [==============================] - 313s 658ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0050 - accuracy: 0.9983
Elapsed Time: 0:51:38.627279
Colab GPU
Train on 469 steps
Epoch 1/10
469/469 [==============================] - 14s 7ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.1589 - accuracy: 0.9530
Epoch 2/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0436 - accuracy: 0.9868
Epoch 3/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0266 - accuracy: 0.9917
Epoch 4/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0192 - accuracy: 0.9938
Epoch 5/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0131 - accuracy: 0.9959
Epoch 6/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0109 - accuracy: 0.9964
Epoch 7/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0065 - accuracy: 0.9980
Epoch 8/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0067 - accuracy: 0.9980
Epoch 9/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0060 - accuracy: 0.9981
Epoch 10/10
469/469 [==============================] - 8s 6ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0057 - accuracy: 0.9978
Elapsed Time: 0:01:24.286260
# Colab TPU
Train on 469 steps
Epoch 1/10
469/469 [==============================] - 136s 275ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.1504 - accuracy: 0.9553
Epoch 2/10
469/469 [==============================] - 135s 276ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0412 - accuracy: 0.9874
Epoch 3/10
469/469 [==============================] - 134s 274ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0272 - accuracy: 0.9915
Epoch 4/10
469/469 [==============================] - 135s 275ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0177 - accuracy: 0.9944
Epoch 5/10
469/469 [==============================] - 134s 274ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0127 - accuracy: 0.9957
Epoch 6/10
469/469 [==============================] - 134s 273ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0096 - accuracy: 0.9967
Epoch 7/10
469/469 [==============================] - 134s 273ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0070 - accuracy: 0.9977
Epoch 8/10
469/469 [==============================] - 133s 272ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0062 - accuracy: 0.9981
Epoch 9/10
469/469 [==============================] - 133s 272ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0057 - accuracy: 0.9980
Epoch 10/10
469/469 [==============================] - 133s 271ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0045 - accuracy: 0.9986
Elapsed Time: 0:22:22.303190

这篇关于Apple Silicon M1 机器学习性能简单测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/513188

相关文章

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2