最大子列和算法

2023-12-19 16:48
文章标签 算法 最大 子列

本文主要是介绍最大子列和算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:whj95

算法一:双边界单扫描

  该算法为三变量三循环
  核心思想:分别设两个变量确立左边界和右边界,然后再用一个变量当做光标从左边界到右边界扫描求和。
  伪码:

int maxsubseqsum(const int A[],int N)
{循环体(i,i < N,i++)循环体(j=i,j < N;j++)抛弃当前和循环体(k=i;k<=j;k++)维护当前和与最大和
}

  C++参考代码如下:

int maxsubseqsum(const int A[],int N)
{int thissum = 0,maxsum = 0;for(int i = 0; i <N; i++)for(int j = i; j < N; j++){thissum = 0;//每次更新边界抛弃之前的thisum值for(int k = i; k <= j; k++)thissum += A[k];if(thissum > maxsum)maxsum = thissum;}return maxsum;
}

  缺陷:所谓光标设置完全没有用,时间复杂度T(N) = O(N 3 )达到了比较恐怖的时间。

算法二:单边界单扫描

  该算法为双变量双循环
  核心思想:设一个变量为左边界,另一个变量从左边界往后扫描即可。
  伪码:

int maxsubseqsum(const int A[],int N)
{循环体(i,i < N,i++)抛弃当前和循环体(j=i,j < N;j++)维护当前和与最大和
}

  C++参考代码如下:

int maxsubseqsum(const int A[],int N)
{int thissum = 0,maxsum = 0;for(int i = 0; i < N; i++){thisnum = 0;//每次更新边界抛弃之前的thisum值for(int j = i; j < N; j++)thissum += A[j];if(thissum > maxsum)maxsum = thissum;}return maxsum;
}

  缺陷:时间复杂度为T(N) = O(N 2 )还是不够优,考虑如何降到O(NlogN),于是有了算法三。
  

算法三:分治法

  这里写图片描述
  图片源于浙大陈越老师的数据结构课件
  可将问题分治,即分解为规模更小的类似的问题:每次将子列对半拆分,最大子列即为max(①最大左子列②最大右子列③横跨划分线的最大子列)
  伪码:

int maxsubseqmax(int A[],int left,int right)
{/*递归部*/递归基类左子列递归,右子列递归/*跨越中部的情况*/循环体{维护当前子列和与最大子列和和}//中部向左最大子列循环体{维护当前子列和与最大子列和和}//中部向右最大子列/*三分归一*/返回max(最大左子列,最大右子列,中部向左最大子列+中部向右最大子列)
}

  C++参考代码如下:

int maxsubseqsum(int A[],int left,int right)
{/*递归基准*/if(left == right){if(A[left] > 0)return A[left];elsereturn 0;}/*左半边右半边递归*/int center = (left + right) / 2;int maxLeftSum = maxsubseqsum(A,left,center);int maxRightSum = maxsubseqsum(A,center + 1,right);/*穿过中部的子列 = 中部往左最大子列+中部往右最大子列*/int thisLeftBorderSum = 0,maxLeftBorderSum = 0;for(int i = center; i >= left; i--){thisLeftBorderSum += A[i];if(thisLeftBorderSum > maxLeftBorderSum)maxLeftBorderSum = thisLeftBorderSum;}for(int i = center + 1; i >= right; i++){thisRightBorderSum += A[i];if(thisRightBorderSum > maxRightBorderSum)maxRightBorderSum = thisRightBorderSum;}return max3(maxLeftSum,maxRightSum,maxLeftBorderSum + maxRightBorderSum);
}/*三分归一*/
int max3(int a,int b,int c)
{int max = 0;if(a > b)max= a;elsemax = b;max = (max,c)?max:c;return max;
}

  缺陷:相比以上两种算法,该算法拥有足够优秀的时间复杂度T(N) = O(NlogN)。推导如下:T(N) = 2T(N/2)+cN = 2[2T(N/2 2 ) + cN/2] + cN = 2 k O(1) + ckN
  ∵N/2 k = 1
  ∴k = log 2 N
  即T(N) = O(NlogN)
  但由于算法四达到了线性时间,所以此算法还并非最优算法。其实该算法在递归基准中也蕴含了算法四的思想。

算法四:单变量在线处理

  核心思想:最大子列和要求的是连续最大。既然连续则扫到的当前子列可以看成一个数,而要求最大则每次维护的当前子列和不能为负(注:不是指单个元素不能为负),否则舍去。
  伪码:

int maxsubseqsum(const int A[],int N)
{循环体{当前子列和 += A[i];if(当前子列和>=0)维护当前子列和与最大子列和if(当前子列和<0)舍去当前子列和(令当前子列和=0)}
}

  C++参考代码如下:

int maxsubseqsum(const int A[],int N)
{int thissum = 0,maxsum = 0;for(int i = 0; i < N; i++){thissum += A[i];if(thissum > maxsum)maxsum = thissum;if(thissum < 0)thissum = 0;}
}

  缺陷:无。
  该算法是此问题的终极算法,时间复杂度T(N) = O(N),仅为线性时间,而且其为在线处理,即突然切除后面的数据也能得出新子列的最大子列。

这篇关于最大子列和算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/512957

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c