邻居表项的delay_probe_time时长

2023-12-19 09:38

本文主要是介绍邻居表项的delay_probe_time时长,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

delay_probe_time控制首次发送邻居请求报文的等待时长,对于arp协议,内核默认的delay_probe_time时长为5秒钟。

struct neigh_table arp_tbl = {.family     = AF_INET,.key_len    = 4,.protocol   = cpu_to_be16(ETH_P_IP),.hash       = arp_hash,.key_eq     = arp_key_eq,.constructor    = arp_constructor,.proxy_redo = parp_redo,.id     = "arp_cache",.parms      = {.tbl            = &arp_tbl,.reachable_time     = 30 * HZ,.data   = {...[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,

通过PROC文件delay_first_probe_time可查看和修改此时长,如下,修改为10秒钟。

$ cat /proc/sys/net/ipv4/neigh/eth0/delay_first_probe_time 
5
$ echo 10 > /proc/sys/net/ipv4/neigh/eth0/delay_first_probe_time  
$     
$ cat /proc/sys/net/ipv4/neigh/eth0/delay_first_probe_time       
10

内核中静态变量neigh_sysctl_table定义了gc_stale_time的PROC文件信息。

static struct neigh_sysctl_table {struct ctl_table_header *sysctl_header;struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
} neigh_sysctl_template __read_mostly = {.neigh_vars = {...NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),

netlink接口

除了以上的PROC文件外,还可使用ip ntable命令查看和修改设备的邻居表参数。

# ip ntable show dev eth0
inet arp_cache dev eth0refcnt 12 reachable 28884 base_reachable 30000 retrans 1000 gc_stale 60000 delay_probe 5000 queue 31 app_probes 0 ucast_probes 3 mcast_probes 3 anycast_delay 1000 proxy_delay 800 proxy_queue 64 locktime 1000 

与PROC文件不同,这里显示的delay_probe时间单位为毫秒。如下将设备eth0的邻居表参数delay_probe修改为10秒钟。

# ip ntable change name arp_cache dev eth0 delay_probe 10000

内核函数neigh_init负责以上ip ntable change命令的处理。

static int __init neigh_init(void)
{...rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);

如下为neightbl_set的实现,函数nla_get_msecs读取IP命令行设置的delay_probe_time的毫秒值参数。

static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack)
{struct neigh_table *tbl;struct nlattr *tb[NDTA_MAX+1];if (tb[NDTA_PARMS]) {struct neigh_parms *p;p = lookup_neigh_parms(tbl, net, ifindex);...for (i = 1; i <= NDTPA_MAX; i++) {if (tbp[i] == NULL) continue;switch (i) {...case NDTPA_DELAY_PROBE_TIME:NEIGH_VAR_SET(p, DELAY_PROBE_TIME, nla_get_msecs(tbp[i]));call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);break;

对于arp协议,宏NEIGH_VAR_SET将修改全局变量arp_tbl的成员parms的data数组,具体为以NEIGH_VAR_DELAY_PROBE_TIME为所对应的成员的值。函数nla_get_msecs将命令行输入的毫秒值转换为内核使用的jiffies值。

#define NEIGH_VAR_SET(p, attr, val) neigh_var_set(p, NEIGH_VAR_ ## attr, val)static inline void neigh_var_set(struct neigh_parms *p, int index, int val)
{                set_bit(index, p->data_state);p->data[index] = val;
}

显示命令ip ntable show由内核中的函数neightbl_fill_parms填充值,对于delay_probe_time的值,由nla_put_msecs填充。

static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
{...if ((parms->dev &&...nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||

如下函数nla_put_msecs,其需要将内核使用delay_probe_time的jiffies表示的值转换为ip ntable show显示时的毫秒值,通过jiffies_to_msecs实现。

static inline int nla_put_msecs(struct sk_buff *skb, int attrtype,unsigned long njiffies, int padattr)
{u64 tmp = jiffies_to_msecs(njiffies);return nla_put_64bit(skb, attrtype, sizeof(u64), &tmp, padattr);
}

delay_probe_time处理

如下邻居表项超时处理函数neigh_timer_handler,如果表项状态为NUD_REACHABLE,但是已经超过reachable_time规定的时长没有确认了,分成以下两种情况处理:

1) 此表项还在被使用,最后一次的使用时间戳到当下时刻还没有超出DELAY_PROBE_TIME(默认5秒钟)定义的时长,将表项状态设置为NUD_DELAY。
2) 如果条件1)不满足,即表项上一次使用时间戳到当下时刻时长超过DELAY_PROBE_TIME定义,将表项状态设置为NUD_STALE。

static void neigh_timer_handler(struct timer_list *t)
{struct neighbour *neigh = from_timer(neigh, t, timer);...state = neigh->nud_state;now = jiffies;next = now + HZ;if (!(state & NUD_IN_TIMER))goto out;if (state & NUD_REACHABLE) {if (time_before_eq(now,neigh->confirmed + neigh->parms->reachable_time)) {neigh_dbg(2, "neigh %p is still alive\n", neigh);next = neigh->confirmed + neigh->parms->reachable_time;} else if (time_before_eq(now,neigh->used +NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {neigh_dbg(2, "neigh %p is delayed\n", neigh);neigh->nud_state = NUD_DELAY;neigh->updated = jiffies;neigh_suspect(neigh);next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);} else {neigh_dbg(2, "neigh %p is suspected\n", neigh);neigh->nud_state = NUD_STALE;neigh->updated = jiffies;neigh_suspect(neigh);notify = 1;}

如果此表项的初始状态已经为NUD_DELAY,但是在定时器超时(DELAY_PROBE_TIME)之前,邻居表项得到了确认,重新将表项状态设置为NUD_REACHABLE。否则,如果表项没有被确认,将其状态设置为NUD_PROBE,发送ARP请求报文,由函数neigh_probe实现。

    } else if (state & NUD_DELAY) {if (time_before_eq(now,neigh->confirmed +NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {neigh_dbg(2, "neigh %p is now reachable\n", neigh);neigh->nud_state = NUD_REACHABLE;neigh->updated = jiffies;neigh_connect(neigh);notify = 1;next = neigh->confirmed + neigh->parms->reachable_time;} else {neigh_dbg(2, "neigh %p is probed\n", neigh);neigh->nud_state = NUD_PROBE;neigh->updated = jiffies;atomic_set(&neigh->probes, 0);notify = 1;next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);}} else {/* NUD_PROBE|NUD_INCOMPLETE */next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);}

邻居表项定时处理函数的时长不小于1/2秒。

    if (neigh->nud_state & NUD_IN_TIMER) {if (time_before(next, jiffies + HZ/2))next = jiffies + HZ/2;if (!mod_timer(&neigh->timer, next))neigh_hold(neigh);}if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {neigh_probe(neigh);} else {

另外,在数据报文发送流程中,如果检测到相应邻居表项的状态为NUD_STALE,将其设置为NUD_DELAY,之后将定时器超时时间设置为DELAY_PROBE_TIME,到期之后发送probe报文,以便更新邻居表项。

int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
{int rc;bool immediate_probe = false;write_lock_bh(&neigh->lock);rc = 0;if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))goto out_unlock_bh;if (neigh->dead)goto out_dead;if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {...} else if (neigh->nud_state & NUD_STALE) {neigh_dbg(2, "neigh %p is delayed\n", neigh);neigh->nud_state = NUD_DELAY;neigh->updated = jiffies;neigh_add_timer(neigh, jiffies +NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));}

内核版本 5.0

这篇关于邻居表项的delay_probe_time时长的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511719

相关文章

linux 下Time_wait过多问题解决

转自:http://blog.csdn.net/jaylong35/article/details/6605077 问题起因: 自己开发了一个服务器和客户端,通过短连接的方式来进行通讯,由于过于频繁的创建连接,导致系统连接数量被占用,不能及时释放。看了一下18888,当时吓到了。 现象: 1、外部机器不能正常连接SSH 2、内向外不能够正常的ping通过,域名也不能正常解析。

python内置模块datetime.time类详细介绍

​​​​​​​Python的datetime模块是一个强大的日期和时间处理库,它提供了多个类来处理日期和时间。主要包括几个功能类datetime.date、datetime.time、datetime.datetime、datetime.timedelta,datetime.timezone等。 ----------动动小手,非常感谢各位的点赞收藏和关注。----------- 使用datet

JobScheduler 调用导致的运行时长30分钟的功耗问题

一、SDK 的使用情况与功耗影响 案例是否导致功耗变大onStartJob return true 且子线程没有调用jobFinished()告知系统功耗变大,最长带来30分钟的partial wakelock 长持锁onStartJob return true 且子线程调用jobFinished()告知系统功耗有影响,主要线程执行时长,标准是30秒内onStartJob return fals

lua data time

local getTime = os.date(“%c”); 其中的%c可以是以下的一种:(注意大小写) %a abbreviated weekday name (e.g., Wed) %A full weekday name (e.g., Wednesday) %b abbreviated month name (e.g., Sep) %B full month name (e.g., Sep

Event Time源码分析

《2021年最新版大数据面试题全面开启更新》 flink 中Processing Time也就是处理时间在watermark定时生成、ProcessFunction中定时器与时间类型的窗口中都有使用,但是其内部是如何实现注册定时器、如何调用、如何容错保证在任务挂掉在下次重启仍然能够触发任务执行,都是我们今天的主题。首先需要了解一下在flink内部时间系统是由哪些类来共同完成这件事,下面画

大数据-121 - Flink Time Watermark 详解 附带示例详解

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis (已更完)Kafka(已更完)Spark(已更完)Flink(正在更新!) 章节内容 上节我们完成了如下的内容: 滑动窗口:时间驱动、事件

DS简记1-Real-time Joint Object Detection and Semantic Segmentation Network for Automated Driving

创新点 1.更小的网络,更多的类别,更复杂的实验 2. 一体化 总结 终于看到一篇检测跟踪一体化的文章 网络结构如下: ResNet10是共享的Encoder,yolov2 是检测的Deconder,FCN8 是分割的Deconder。 其实很简单,论文作者也指出:Our work is closest to the recent MultiNet. We differ by focus

Go-Time

日期&时间格式化。 package mainimport ("fmt""time")func main() {now := time.Now()now_string := fmt.Sprintf("%d%02d%02d-%02d%02d%02d-Others",now.Year(), now.Month(), now.Day(),now.Hour(), now.Minute(), now.Se

音视频入门基础:WAV专题(8)——FFmpeg源码中计算WAV音频文件AVStream的time_base的实现

一、引言 本文讲解FFmpeg源码对WAV音频文件进行解复用(解封装)时,其AVStream的time_base是怎样被计算出来的。 二、FFmpeg源码中计算WAV音频文件AVStream的time_base的实现 从《音视频入门基础:WAV专题(5)——FFmpeg源码中解码WAV Header的实现》中可以知道,FFmpeg对WAV音频文件进行解复用(解封装)时,其源码内部

el-time-select 动态增加时间

<template><div><div v-for="(item, index) in timeSlots" :key="index"><el-time-select placeholder="起始时间" v-model="item.startTime" :picker-options="{start: '00:00',step: '00:15',end: '23:59',}"></el-ti