3.Keras实现路透社新闻分类

2023-12-19 09:10

本文主要是介绍3.Keras实现路透社新闻分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、路透社数据集
  • 二、步骤
    • 1.导入Keras
    • 2、加载路透社数据集
    • 3、准备数据
    • 4、构建网络
      • 4.1 构建模型
      • 4.2 编译模型
      • 4.3 准备验证集
      • 4.4 训练模型
    • 5、绘制图像
    • 6、重新训练一个新的模型
    • 7、使用训练好的网络在新数据上生成预测结果
    • 8、处理标签和损失的另一种方法
    • 9、 中间层维度足够大的重要性
  • 总结


前言

笔者权当做笔记,借鉴的是《Python 深度学习》这本书,里面的代码也都是书上的代码,用的是jupyter notebook 编写代码


提示:以下是本篇文章正文内容,下面案例可供参考

一、路透社数据集

包含了许多短新闻及其对应的主题。是一个简单广泛的文本分类数据集。包括46个不同的主题:某些主题的样本更多,训练集中每个主题都有至少10个样本。
和IMDB一样,路透社数据集也是内置在Keras的一部分

二、步骤

1.导入Keras

在这里插入图片描述


2、加载路透社数据集

from keras.datasets import reuters# num_words=10 000 限制的是前10 000个最常出现的单词
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)

我们有8982个训练样本和2246个测试样本

在这里插入图片描述

train_data[0]  # 每一个样本都是整数列表

在这里插入图片描述

# 将索引解码为单词
word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])  # 反转字典
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
# 索引减去3,因为0、1、2是为padding(填充)、start of sequence(序列开始)、unknown(未知词)分别保留的索引
decoded_newswire

在这里插入图片描述

3、准备数据

和上一次一样,要将数据向量化
同样我们还用one-hot编码
import numpy as npdef vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))  # (8982, 10000)的零矩阵for i, sequence in enumerate(sequences):  # enumerate 这个就是从0开始编码的那种results[i, sequence] = 1.return results# 数据向量化
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
def to_one_hot(labels, dimension=46):results = np.zeros((len(labels), dimension))  # (8982, 46)的零矩阵for i, label in enumerate(labels):results[i, label] = 1.  # 相当于就是在编号i这一行,然后对应的类别号列编成1return results# 标签向量化
one_hot_train_labels = to_one_hot(train_labels)
one_hot_test_labels = to_one_hot(test_labels)

上面的那个也可以用Keras内置方法实现这个操作

# 上述向量化其实Keras内置也可以实现
from keras.utils.np_utils import to_categorical
# 独热编码
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

4、构建网络

4.1 构建模型

from keras import models
from keras import layersmodel = models.Sequential()model.add(layers.Dense(64, activation='relu', input_shape=(10000, )))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

在这里插入图片描述
参数解释

4.2 编译模型

# 多元分类的交叉熵 loss='categorical_crossentropy'
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

4.3 准备验证集

# 和上次的一样用切片来做即可
x_val = x_train[:1000]  # 前1000个是验证集
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

4.4 训练模型

h = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))

在这里插入图片描述

5、绘制图像

import matplotlib.pyplot as pltloss = h.history['loss']
val_loss = h.history['val_loss']epochs = range(1, len(loss) + 1)plt.plot(epochs, loss, 'ro', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

在这里插入图片描述

plt.clf()  # 清空图像acc = h.history['accuracy']
val_acc = h.history['val_accuracy']plt.plot(epochs, acc, 'ro', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

在这里插入图片描述
我们得出在第7轮的之后要出现“过拟合”现象

在这里插入图片描述

6、重新训练一个新的模型

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000, )))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(partial_x_train, partial_y_train, epochs=7, batch_size=512, validation_data=(x_val, y_val))
results = model.evaluate(x_test, one_hot_test_labels)

在这里插入图片描述
在这里插入图片描述
只能得到约78%的精度

import copy  # 复制test_labels_copy = copy.copy(test_labels)
np.random.shuffle(test_labels_copy)
hits_array = np.array(test_labels) == np.array(test_labels_copy)
float(np.sum(hits_array)) / len(test_labels)

在这里插入图片描述
完全随机的精度是18%

7、使用训练好的网络在新数据上生成预测结果

predictions = model.predict(x_test)
print(predictions[0].shape)
print(str(np.sum(predictions[0])))  # 概率加起来就是1
print(np.argmax(predictions[0]))  # 这个数据哪一个分类概率最大 

在这里插入图片描述

8、处理标签和损失的另一种方法

就是使用loss="sparse_categotical_crossentropy"这样Keras会自动进行分类编码

9、 中间层维度足够大的重要性

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000, )))
model.add(layers.Dense(4, activation='relu'))  # 测试中间层维度变小带来的影响
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=128, validation_data=(x_val, y_val))

在这里插入图片描述
可以很清楚的发现,中间层压缩到很小的维度后,准确率变低了许多,可能的原因是信息的缺失。


总结

这个是我单纯看书跟着敲的,权当作笔记了,后续还要继续学习。强推《Python 深度学习》🙂

这篇关于3.Keras实现路透社新闻分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511644

相关文章

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络