使用Gensim库来实现Word2Vec

2023-12-18 19:30

本文主要是介绍使用Gensim库来实现Word2Vec,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gensim

Gensim是一个开源库,用于无监督的统计建模和自然语言处理,用Python和Cython实现的

 

 

Gensim库来实现Word2Vec

Word2Vec被认为是自然语言处理(NLP)领域中最大、最新的突破之一。其的概念简单,优雅,(相对)容易掌握。Google一下就会找到一堆关于如何使用诸如Gensim和TensorFlow的库来调用Word2Vec方法的结果


Word2Vec的目标是生成带有语义的单词的向量表示,用于进一步的NLP任务。每个单词向量通常有几百个维度,语料库中每个唯一的单词在空间中被分配一个向量。例如,单词“happy”可以表示为4维向量[0.24、0.45、0.11、0.49],“sad”具有向量[0.88、0.78、0.45、0.91]。

这种从单词到向量的转换也被称为单词嵌入(word embedding)。这种转换的原因是机器学习算法可以对数字(在向量中的)而不是单词进行线性代数运算。

 

首先解压数据,读入到list里面

import gzip
import gensim
import logging#logging格式设置
logging.basicConfig(format="", level=logging.INFO)#解压我们的数据
data_file = "reviews_data.txt.gz"with gzip.open(data_file,'rb') as f:for i, line in enumerate(f):print(line)break#--------------下一步需要把读的数据变为gensim的输入------------------------#把gzip文件的内容读入到list
def read_input(input_file):logging.info("reading file {0}...this may take a while".format(input_file))with gzip.open(input_file,'rb') as f:for i, line in enumerate(f):if(i%10000 == 0):logging.info("read {0} reviews".format(i))#做预处理,每个review返回一个单词列表yield gensim.utils.simple_preprocess(line)documents = list(read_input((data_file)))
logging.info("Done reading data file")
print(documents)

 

训练model

import gzip
import gensim
import logging#logging格式设置
logging.basicConfig(format="", level=logging.INFO)#解压我们的数据
data_file = "reviews_data.txt.gz"with gzip.open(data_file,'rb') as f:for i, line in enumerate(f):print(line)break#--------------下一步需要把读的数据变为gensim的输入------------------------#把gzip文件的内容读入到list
def read_input(input_file):logging.info("reading file {0}...this may take a while".format(input_file))with gzip.open(input_file,'rb') as f:for i, line in enumerate(f):if(i%10000 == 0):logging.info("read {0} reviews".format(i))#做预处理,每个review返回一个单词列表yield gensim.utils.simple_preprocess(line)documents = list(read_input((data_file)))
logging.info("Done reading data file")
print(documents)#--------------训练我们的model-------------model = gensim.models.Word2Vec(documents, size=150,window=10, min_count=2,workers=10)#不加这句,光上面那句也能训练,这句是给训练的时候规定一些参数,比如epochs,这里规定了10,如果不规定默认是5的
model.train(documents,total_examples=len(documents), epochs=10)

 

 

我们可以通过训练好的模型做什么呢?

我们要做的是,给出一个之前语料中没有出现的词,然后能够在语料中找一个最相近的

                         能够计算两个单词之间的相似度

                         能够在几个单词中找出意思和其他单词相差较大的单词来

找和polite最相近的6个词

找和france最相近的6个词

找和shocked最相近的6个词

寻找床上用品相关的词

计算两个单词之间的相似度

在几个单词中找到意思和其他单词相差较大的单词,即the odd one

 

 

 

总程序

import gzip
import gensim
import logging#logging格式设置
logging.basicConfig(format="", level=logging.INFO)#解压我们的数据
data_file = "reviews_data.txt.gz"with gzip.open(data_file,'rb') as f:for i, line in enumerate(f):print(line)break#--------------下一步需要把读的数据变为gensim的输入------------------------#把gzip文件的内容读入到list
def read_input(input_file):logging.info("reading file {0}...this may take a while".format(input_file))with gzip.open(input_file,'rb') as f:for i, line in enumerate(f):if(i%10000 == 0):logging.info("read {0} reviews".format(i))#做预处理,每个review返回一个单词列表yield gensim.utils.simple_preprocess(line)documents = list(read_input((data_file)))
logging.info("Done reading data file")
# print(documents)#--------------训练我们的model-------------model = gensim.models.Word2Vec(documents, size=150,window=10, min_count=2,workers=10)#不加这句,光上面那句也能训练,这句是给训练的时候规定一些参数,比如epochs,这里规定了10,如果不规定默认是5的
model.train(documents,total_examples=len(documents), epochs=10)#------------验证我们的结果--------------------
w1 = "dirty"
print(model.wv.most_similar(positive=w1))# look up top 6 words similar to 'polite'
w1 = ["polite"]
print(model.wv.most_similar (positive=w1,topn=6))# look up top 6 words similar to 'france'
w1 = ["france"]
print(model.wv.most_similar (positive=w1,topn=6))# look up top 6 words similar to 'shocked'
w1 = ["shocked"]
print(model.wv.most_similar (positive=w1,topn=6))# get everything related to stuff on the bed
w1 = ["bed",'sheet','pillow']
w2 = ['couch']
print(model.wv.most_similar (positive=w1,negative=w2,topn=10))# similarity between two different words
print(model.wv.similarity(w1="dirty",w2="smelly"))# similarity between two identical words
print(model.wv.similarity(w1="dirty",w2="dirty"))# similarity between two unrelated words
print(model.wv.similarity(w1="dirty",w2="clean"))#Find the odd one out# Which one is the odd one out in this list?
print(model.wv.doesnt_match(["cat","dog","france"]))# Which one is the odd one out in this list?
print(model.wv.doesnt_match(["bed","pillow","duvet","shower"]))

 

这篇关于使用Gensim库来实现Word2Vec的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/509519

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合