使用Gensim库来实现Word2Vec

2023-12-18 19:30

本文主要是介绍使用Gensim库来实现Word2Vec,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gensim

Gensim是一个开源库,用于无监督的统计建模和自然语言处理,用Python和Cython实现的

 

 

Gensim库来实现Word2Vec

Word2Vec被认为是自然语言处理(NLP)领域中最大、最新的突破之一。其的概念简单,优雅,(相对)容易掌握。Google一下就会找到一堆关于如何使用诸如Gensim和TensorFlow的库来调用Word2Vec方法的结果


Word2Vec的目标是生成带有语义的单词的向量表示,用于进一步的NLP任务。每个单词向量通常有几百个维度,语料库中每个唯一的单词在空间中被分配一个向量。例如,单词“happy”可以表示为4维向量[0.24、0.45、0.11、0.49],“sad”具有向量[0.88、0.78、0.45、0.91]。

这种从单词到向量的转换也被称为单词嵌入(word embedding)。这种转换的原因是机器学习算法可以对数字(在向量中的)而不是单词进行线性代数运算。

 

首先解压数据,读入到list里面

import gzip
import gensim
import logging#logging格式设置
logging.basicConfig(format="", level=logging.INFO)#解压我们的数据
data_file = "reviews_data.txt.gz"with gzip.open(data_file,'rb') as f:for i, line in enumerate(f):print(line)break#--------------下一步需要把读的数据变为gensim的输入------------------------#把gzip文件的内容读入到list
def read_input(input_file):logging.info("reading file {0}...this may take a while".format(input_file))with gzip.open(input_file,'rb') as f:for i, line in enumerate(f):if(i%10000 == 0):logging.info("read {0} reviews".format(i))#做预处理,每个review返回一个单词列表yield gensim.utils.simple_preprocess(line)documents = list(read_input((data_file)))
logging.info("Done reading data file")
print(documents)

 

训练model

import gzip
import gensim
import logging#logging格式设置
logging.basicConfig(format="", level=logging.INFO)#解压我们的数据
data_file = "reviews_data.txt.gz"with gzip.open(data_file,'rb') as f:for i, line in enumerate(f):print(line)break#--------------下一步需要把读的数据变为gensim的输入------------------------#把gzip文件的内容读入到list
def read_input(input_file):logging.info("reading file {0}...this may take a while".format(input_file))with gzip.open(input_file,'rb') as f:for i, line in enumerate(f):if(i%10000 == 0):logging.info("read {0} reviews".format(i))#做预处理,每个review返回一个单词列表yield gensim.utils.simple_preprocess(line)documents = list(read_input((data_file)))
logging.info("Done reading data file")
print(documents)#--------------训练我们的model-------------model = gensim.models.Word2Vec(documents, size=150,window=10, min_count=2,workers=10)#不加这句,光上面那句也能训练,这句是给训练的时候规定一些参数,比如epochs,这里规定了10,如果不规定默认是5的
model.train(documents,total_examples=len(documents), epochs=10)

 

 

我们可以通过训练好的模型做什么呢?

我们要做的是,给出一个之前语料中没有出现的词,然后能够在语料中找一个最相近的

                         能够计算两个单词之间的相似度

                         能够在几个单词中找出意思和其他单词相差较大的单词来

找和polite最相近的6个词

找和france最相近的6个词

找和shocked最相近的6个词

寻找床上用品相关的词

计算两个单词之间的相似度

在几个单词中找到意思和其他单词相差较大的单词,即the odd one

 

 

 

总程序

import gzip
import gensim
import logging#logging格式设置
logging.basicConfig(format="", level=logging.INFO)#解压我们的数据
data_file = "reviews_data.txt.gz"with gzip.open(data_file,'rb') as f:for i, line in enumerate(f):print(line)break#--------------下一步需要把读的数据变为gensim的输入------------------------#把gzip文件的内容读入到list
def read_input(input_file):logging.info("reading file {0}...this may take a while".format(input_file))with gzip.open(input_file,'rb') as f:for i, line in enumerate(f):if(i%10000 == 0):logging.info("read {0} reviews".format(i))#做预处理,每个review返回一个单词列表yield gensim.utils.simple_preprocess(line)documents = list(read_input((data_file)))
logging.info("Done reading data file")
# print(documents)#--------------训练我们的model-------------model = gensim.models.Word2Vec(documents, size=150,window=10, min_count=2,workers=10)#不加这句,光上面那句也能训练,这句是给训练的时候规定一些参数,比如epochs,这里规定了10,如果不规定默认是5的
model.train(documents,total_examples=len(documents), epochs=10)#------------验证我们的结果--------------------
w1 = "dirty"
print(model.wv.most_similar(positive=w1))# look up top 6 words similar to 'polite'
w1 = ["polite"]
print(model.wv.most_similar (positive=w1,topn=6))# look up top 6 words similar to 'france'
w1 = ["france"]
print(model.wv.most_similar (positive=w1,topn=6))# look up top 6 words similar to 'shocked'
w1 = ["shocked"]
print(model.wv.most_similar (positive=w1,topn=6))# get everything related to stuff on the bed
w1 = ["bed",'sheet','pillow']
w2 = ['couch']
print(model.wv.most_similar (positive=w1,negative=w2,topn=10))# similarity between two different words
print(model.wv.similarity(w1="dirty",w2="smelly"))# similarity between two identical words
print(model.wv.similarity(w1="dirty",w2="dirty"))# similarity between two unrelated words
print(model.wv.similarity(w1="dirty",w2="clean"))#Find the odd one out# Which one is the odd one out in this list?
print(model.wv.doesnt_match(["cat","dog","france"]))# Which one is the odd one out in this list?
print(model.wv.doesnt_match(["bed","pillow","duvet","shower"]))

 

这篇关于使用Gensim库来实现Word2Vec的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/509519

相关文章

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

springboot filter实现请求响应全链路拦截

《springbootfilter实现请求响应全链路拦截》这篇文章主要为大家详细介绍了SpringBoot如何结合Filter同时拦截请求和响应,从而实现​​日志采集自动化,感兴趣的小伙伴可以跟随小... 目录一、为什么你需要这个过滤器?​​​二、核心实现:一个Filter搞定双向数据流​​​​三、完整代码