plug-中文大模型

2023-12-17 21:20
文章标签 模型 中文 plug

本文主要是介绍plug-中文大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PLUG 中文大模型延续的是 PALM 的思路,结合 NLU 和 NLG 的任务,得到一个理解和生成同时做的模型。NLU 任务是我们自研的 StructBERT 模型,在 BERT的基础上引入三分类以及对词级别打乱。NLG 是 PALM 的自编码自回归结合。训练分为两个阶段,第一阶段是 StructBERT 的思路,把模型大小提升。第二阶段延续 PALM 的思路,用 encoder 做初始化,加上 decoder 之后做生成的训练。这样可以得到一个 Encoder-Decoder 统一理解生成模型。做理解相关任务,比如分类/预测时,只需要把 encoder 部分拿出来,沿用 BERT 的方法。做生成相关任务时,再使用全部的 Encoder-Decoder 架构。这里也做了一些推理加速的工作,和中文 GPT 是相同的技术,获得了 10x 加速的效果。

 

 

270 亿参数的 PLUG 模型已经在 ModelScope 上开放,大家可以按照流程申请获取下载链接,然后使用 Pipeline 做部署推理。

多模态统一生成预训练模型 mPLUG

多模态相关主要的任务有两种。一个是 VQA,输入图片和针对图片的问题,模型预测答案。另一个是 COCO Caption,输入图片,模型预测图片的描述。

我们提出了多模态统一生成的预训练模型 mPLUG,主要解决的是多模态融合时,视觉特征序列过长导致的低效性和信息淹没问题。Vit 结构的问题是,在切 patch 的过程中,如果切的比较小且图片分辨率高,切下来序列就会很长,序列长会带来训练低效的问题。另外在和文本模态融合的过程中,如果图片数据过长,会淹没一部分文本的信息。

mPLUG 结构的底层还是先分别对文本和图片做编码,之后用对比学习把两个维度的特征拉到同一空间,再传入我们提出的 skip-connection 网络。之前的 co-attention 或者图文拼接的方式会存在信息淹没问题,我们的核心点在于只做非对称的 attention,即只将视觉特征 cross 到文本侧。因为训练速度慢主要在视觉,这样可以极大提升模型训练速度。但是如果只采用这种方式,因为文本序列比较短,会带来视觉信息的丢失。所以我们在 skip-connection 网络里面,先通过一个多层的非对称的 co-attention 网络,之后把视觉信息拼接进来,然后再过一层的 connected attention。这样既可以保证视觉信息不丢失,同时防止文本信息被视觉信息淹没。

以上就是图片和文本信息融合的 encoder,之后再加上 decoder 做生成的预训练。这就是我们整体的架构了。这种架构的优势在,一方面通过这种模块化多流的 Transformer 结构,可以统一理解和生成。同时它又可以灵活地拆拔不同模块进行微调。比如做图文检索任务,可以不要 decoder,只把 vision 和 text encoder 拆出来做向量检索,也可以用 ITM 图文匹配 Score。如果是 caption 任务,则不需要 text encoder,只需要 vision encoder 直接 cross 到 decoder 做图片描述的生成。如果做开放域的视觉问答,则全部的模块都会用到。

 

 

这篇关于plug-中文大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505905

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者