R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?

本文主要是介绍R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一句话结论:只要有网有流量,直接用长WKT传递给参数【geometry】、参数【limit】配合参数【start】获取所有记录。

当我在阅读 【rgbif】 给出的用户手册时,注意到 【occ_search】 强调了 参数 【geometry】使用的wkt格式字符串长度。

文中如是写道:

当处理 长WKT字符串(>1500个字符) 时,可以通过参数geom_big进行设置:asis:此值为默认值。不做任何处理,只传递WKT字符串。axe:这个选项将使用sf包将WKT字符串切割成数个多边形,然后根据每个多边形块单独进行数据请求,然后将所有数据组合在一起返回。请注意,如果WKT字符串不是多边形类型,将退回到asis,因为没有办法分割线字符串等。这个选项在大多数情况下会比其他两个选项慢。但是,这种多边形分割方法不会像使用bbox选项那样存在想要多少记录和实际返回多少记录之间脱节的问题。该方法使用sf::st_make_grid和sf::st_intersection,它们有两个参数cellsize和n。您可以通过调整geom_size和geom_n来调整这些参数。在切换返回的WKT字符串的数量方面,geom_size似乎更有用。请参阅wkt_parse手动从较大的WKT字符串中分解WKT边界框,或者将较大的WKT字符串分解为许多较小的WKT字符串。bbox:这个选项检查您的WKT字符串是否超过1500个字符,如果是,先从WKT创建一个边界框,使用该边界框进行GBIF搜索,然后将结果数据修剪为仅在原始WKT字符串中出现的数据。但有一个注意事项。因为先从WKT创建了一个边界框,并且limit参数确定了要获取的记录子集,所以当我们将结果数据修剪到WKT时,您获得的记录数量可能少于您使用limit参数设置的记录数量。但是,您可以将限制设置得足够高,以便获得在该边界框中找到的所有记录,然后您将获得WKT中可用的所有记录。

然而,我在尝试【使用rgbif获取非行政单位区域内的物种记录信息】时发现:即使我使用的wkt字符串长度远大于1500,但是直接将它或者用【wkt_parse】方法分割了它的结果传递给【occ_search】方法的【geometry】参数时,结果数据根本没有差异,而结果长度的不同仅仅是因为wkt表达的polygon数量不同造成的独立请求数量不同,有关这方面的信息请参考R语言【rgbif】——什么是多值传参?如何在rgbif中一次性传递多个值?多值传参时的要求有哪些?

简单来说,实际操作中,我发现小心翼翼地处理长WKT字符串完全是多此一举!

那么,真的还有必要使用【wkt_parse】来分割长WKT吗

下面我将用事实来回答这个问题。

首先,我使用的WKT字符串是在【R语言【rgbif】——使用rgbif获取非行政单位区域内的物种记录信息(以泛喜马拉雅地区为例)】中的 变量【wkt】变量【wkt_for_rgbif】

变量【wkt】 它的长度nchar(wkt)为8909。符合rgbif对长WKT字符串的定义标准。

变量【wkt_for_rgbif】 是 rgbif 中 wkt_parse 方法将 变量【wkt】变为许多个长度小于1500的非长WKT字符串片段。

for (i in wkt_for_rgbif){print(nchar(i))}

在这里插入图片描述

1. 查找的数据量的对比

我先按照用户手册推荐的,使用非长WKT字符串的 变量【wkt_for_rgbif】

  1. 变量【wkt_for_rgbif】 传入 occ_searchgeometry 参数,limit 参数设置为 0 以只获得数据量,hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    a <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = wkt_for_rgbif)
    

    因为参数【geometry】接受了多值输入,向量型的多值输入发起了多次独立请求,所以结果是一个长度为 wkt_for_rgbif 的列表。
    在这里插入图片描述
    在这里插入图片描述

  2. 前文提到了 wkt_for_rgbif 是向量型的多值输入,会发起多次独立请求,进而生成了结果列表。既然提到了多值输入,还有不会发起多次独立请求的字符串型的多值输入。那么将 wkt_for_rgbif 转换为字符串型再传递给 参数【geometry】 时会发生什么呢?

    b <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = paste(wkt_for_rgbif, collapse = ";"))
    

    在这里插入图片描述
    不同类型的多值输入生成的结果数量相同吗?

    sum_a <- 0
    for (i in a){sum_a <- sum_a + i$meta$count}
    sum_a
    
    [1] 6819489
    
    b$meta$count == sum_a
    
    [1] TRUE
    

    意料之中,数量相同。

  3. 实践出真知,直接用 长WKT字符串 变量【wkt】 又如何呢?

    c <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = wkt)
    

    在这里插入图片描述
    6819489,没有问题!

2. 查找的实际数据的比对

在上面对数据量比对中,我通过参数【limit】设置为0,只获取数据量。

但回头一想, occ_search 单次请求的返回数据量最多为 100000,正是通过参数【limit】实现控制的。前文得知查找到的数据量为 6819489,远超过了单次请求返回数量的上限,假设不考虑拿到所有的 6819489 条数据,只按照参数【limit】默认的 500 条数据来操作,那么使用不同长度的WKT字符串拿到的结果会一样吗?

  1. 变量【wkt_for_rgbif】 传入 occ_searchgeometry 参数,limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    d <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = wkt_for_rgbif)
    

    在这里插入图片描述
    对于返回的结果,我要查看它的数量:

    sum_d <- c()
    for (i in d){sum_d <- append(sum_d, nrow(i$data))}
    sum_d <- sum(sum_d)
    
    [1] 768
    

    以及数据内容:

    sum_d_data <- d$geom1$data
    for (i in d){sum_d_data <- full_join(sum_d_data, i$data)}
    

    在这里插入图片描述
    说明 参数【limit】 限制每次独立请求的返回数量上限为 50。

  2. wkt_for_rgbif 转换为字符串型再传递给 参数【geometry】limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    e <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = paste(wkt_for_rgbif, collapse = ";"))
    e$data
    

    只会返回 50 条数据。

    在这里插入图片描述

  3. 将长WKT字符串 变量【wkt】 传入 occ_searchgeometry 参数,limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    f <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = wkt)
    f$data
    

    这种方式的结果和上一步的结果完全相同。在这里插入图片描述

总结

一般来说,长WKT字符串的处理 是不需要的!因为,利用rgbif从gbif上获取数据时,参数【limit】 更多地用来配合 参数【start】 来获得完整的筛选结果。这么看来,使用 方法【wkt_parse】 分割WKT,然而会让操作更加复杂,增加使用门槛。

这篇关于R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505140

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

BUUCTF(34)特殊的 BASE64

使用pycharm时,如果想把代码撤销到之前的状态可以用 Ctrl+z 如果不小心撤销多了,可以用 Ctrl+Shift+Z 还原, 别傻傻的重新敲了 BUUCTF在线评测 (buuoj.cn) 查看字符串,想到base64的变表 这里用的c++的标准程序库中的string,头文件是#include<string> 这是base64的加密函数 std::string

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而