R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?

本文主要是介绍R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一句话结论:只要有网有流量,直接用长WKT传递给参数【geometry】、参数【limit】配合参数【start】获取所有记录。

当我在阅读 【rgbif】 给出的用户手册时,注意到 【occ_search】 强调了 参数 【geometry】使用的wkt格式字符串长度。

文中如是写道:

当处理 长WKT字符串(>1500个字符) 时,可以通过参数geom_big进行设置:asis:此值为默认值。不做任何处理,只传递WKT字符串。axe:这个选项将使用sf包将WKT字符串切割成数个多边形,然后根据每个多边形块单独进行数据请求,然后将所有数据组合在一起返回。请注意,如果WKT字符串不是多边形类型,将退回到asis,因为没有办法分割线字符串等。这个选项在大多数情况下会比其他两个选项慢。但是,这种多边形分割方法不会像使用bbox选项那样存在想要多少记录和实际返回多少记录之间脱节的问题。该方法使用sf::st_make_grid和sf::st_intersection,它们有两个参数cellsize和n。您可以通过调整geom_size和geom_n来调整这些参数。在切换返回的WKT字符串的数量方面,geom_size似乎更有用。请参阅wkt_parse手动从较大的WKT字符串中分解WKT边界框,或者将较大的WKT字符串分解为许多较小的WKT字符串。bbox:这个选项检查您的WKT字符串是否超过1500个字符,如果是,先从WKT创建一个边界框,使用该边界框进行GBIF搜索,然后将结果数据修剪为仅在原始WKT字符串中出现的数据。但有一个注意事项。因为先从WKT创建了一个边界框,并且limit参数确定了要获取的记录子集,所以当我们将结果数据修剪到WKT时,您获得的记录数量可能少于您使用limit参数设置的记录数量。但是,您可以将限制设置得足够高,以便获得在该边界框中找到的所有记录,然后您将获得WKT中可用的所有记录。

然而,我在尝试【使用rgbif获取非行政单位区域内的物种记录信息】时发现:即使我使用的wkt字符串长度远大于1500,但是直接将它或者用【wkt_parse】方法分割了它的结果传递给【occ_search】方法的【geometry】参数时,结果数据根本没有差异,而结果长度的不同仅仅是因为wkt表达的polygon数量不同造成的独立请求数量不同,有关这方面的信息请参考R语言【rgbif】——什么是多值传参?如何在rgbif中一次性传递多个值?多值传参时的要求有哪些?

简单来说,实际操作中,我发现小心翼翼地处理长WKT字符串完全是多此一举!

那么,真的还有必要使用【wkt_parse】来分割长WKT吗

下面我将用事实来回答这个问题。

首先,我使用的WKT字符串是在【R语言【rgbif】——使用rgbif获取非行政单位区域内的物种记录信息(以泛喜马拉雅地区为例)】中的 变量【wkt】变量【wkt_for_rgbif】

变量【wkt】 它的长度nchar(wkt)为8909。符合rgbif对长WKT字符串的定义标准。

变量【wkt_for_rgbif】 是 rgbif 中 wkt_parse 方法将 变量【wkt】变为许多个长度小于1500的非长WKT字符串片段。

for (i in wkt_for_rgbif){print(nchar(i))}

在这里插入图片描述

1. 查找的数据量的对比

我先按照用户手册推荐的,使用非长WKT字符串的 变量【wkt_for_rgbif】

  1. 变量【wkt_for_rgbif】 传入 occ_searchgeometry 参数,limit 参数设置为 0 以只获得数据量,hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    a <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = wkt_for_rgbif)
    

    因为参数【geometry】接受了多值输入,向量型的多值输入发起了多次独立请求,所以结果是一个长度为 wkt_for_rgbif 的列表。
    在这里插入图片描述
    在这里插入图片描述

  2. 前文提到了 wkt_for_rgbif 是向量型的多值输入,会发起多次独立请求,进而生成了结果列表。既然提到了多值输入,还有不会发起多次独立请求的字符串型的多值输入。那么将 wkt_for_rgbif 转换为字符串型再传递给 参数【geometry】 时会发生什么呢?

    b <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = paste(wkt_for_rgbif, collapse = ";"))
    

    在这里插入图片描述
    不同类型的多值输入生成的结果数量相同吗?

    sum_a <- 0
    for (i in a){sum_a <- sum_a + i$meta$count}
    sum_a
    
    [1] 6819489
    
    b$meta$count == sum_a
    
    [1] TRUE
    

    意料之中,数量相同。

  3. 实践出真知,直接用 长WKT字符串 变量【wkt】 又如何呢?

    c <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = wkt)
    

    在这里插入图片描述
    6819489,没有问题!

2. 查找的实际数据的比对

在上面对数据量比对中,我通过参数【limit】设置为0,只获取数据量。

但回头一想, occ_search 单次请求的返回数据量最多为 100000,正是通过参数【limit】实现控制的。前文得知查找到的数据量为 6819489,远超过了单次请求返回数量的上限,假设不考虑拿到所有的 6819489 条数据,只按照参数【limit】默认的 500 条数据来操作,那么使用不同长度的WKT字符串拿到的结果会一样吗?

  1. 变量【wkt_for_rgbif】 传入 occ_searchgeometry 参数,limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    d <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = wkt_for_rgbif)
    

    在这里插入图片描述
    对于返回的结果,我要查看它的数量:

    sum_d <- c()
    for (i in d){sum_d <- append(sum_d, nrow(i$data))}
    sum_d <- sum(sum_d)
    
    [1] 768
    

    以及数据内容:

    sum_d_data <- d$geom1$data
    for (i in d){sum_d_data <- full_join(sum_d_data, i$data)}
    

    在这里插入图片描述
    说明 参数【limit】 限制每次独立请求的返回数量上限为 50。

  2. wkt_for_rgbif 转换为字符串型再传递给 参数【geometry】limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    e <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = paste(wkt_for_rgbif, collapse = ";"))
    e$data
    

    只会返回 50 条数据。

    在这里插入图片描述

  3. 将长WKT字符串 变量【wkt】 传入 occ_searchgeometry 参数,limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    f <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = wkt)
    f$data
    

    这种方式的结果和上一步的结果完全相同。在这里插入图片描述

总结

一般来说,长WKT字符串的处理 是不需要的!因为,利用rgbif从gbif上获取数据时,参数【limit】 更多地用来配合 参数【start】 来获得完整的筛选结果。这么看来,使用 方法【wkt_parse】 分割WKT,然而会让操作更加复杂,增加使用门槛。

这篇关于R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505140

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont