用python做餐饮业的数据分析

2023-12-16 13:01

本文主要是介绍用python做餐饮业的数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题:

1,订单表的长度 shape columns
2,统计菜单的平均价格(amount)
3,什么菜最受欢迎
订单 客户 时间 菜品 这几个维度
4,哪个订单ID点的菜最多等问题

首先在jupyter note里导入模块

import numpy as np
import pandas as pd
import matplotlib.pylot as plt
plt.rcParams['font.sans_serif'] = 'SimHei'

#设置中文显示
#第一步,加载数据

data1 = pd.read_excel('表1',sheet_name='')
data2 =pd.read_excel('表2',sheet_name='')
date3 =pd.read_excel('表3',sheet_name='')

#第二步,数据预处理(合并数据,NA等处理),分析数据

data = concat([data1,data2,data3],axis = 0) #按照行进行数据拼接

#data.head(5)

data.dropna(axis = 1,inplace = True) #按照列删除NA列,并且修改源数据data.info()

#统计卖出菜品的平均价格

round(data['amounts'].mean(),2) #方法一:pandas 自带函数
round(np.mean(data['amounts']),2) #方法二: numpy函数处理

#频数统计,什么菜最受欢迎
#去除菜名,计数统计,统计出销量前十名

dashes_count = data['dishes_name'].value_counts()[:10]

#第三步,数据可视化matplotlib

dishes_count.plot(kind='line',colors=[' r '] )) #绘制折线图
dishes_count.plot(kind='bar',fontsize=16) #绘制堆积柱形图

#遍历循环 加工图

for x,y in enumerate(dishes_count):print(x,y)plt.text(x,y+2,y,ha='center',fontsize=12)

1,#订单点菜的种类最多,区别于点菜的数量,就是要分组
(shift +回车 是执行的快捷键)

date_group = data['order_id'].valuecounts()[:10]
date_group.plot(kind = 'bar',fontsize=16,color=['r','m','b',y','g')
plt.title('订单点菜的种类Top10')
plt.xlabel('订单ID',fontsize=16)
plt.ylabel('点菜种类',fontsize=16)

#八月份餐厅订单点菜种类前10名,平均点菜25个菜品

#订单ID平均菜品最贵前10名

分组

2,#订单ID点菜数量TOP10 分组order_id,counts求和,排序,前十)

data['Total_amount'] = data['counts']*data['amounts']  #统计单道菜消费总额
dataGroup = data[['order_id','counts','amounts','total_amounts']].groupby(by = 'order_id')
Group_sum = dataGroup.sum() #分组求和
sort_counts = Group_sum.sort_values(by = 'counts',ascending =False)
sort_counts['counts'][:10].plot(kind='bar',fontsize = 16)
plt.xlabel('订单ID')
plt.ylabel('点菜数量')
plt.title('订单ID点菜数量Top10')
#八月份订单点菜数量前10名

#哪个订单ID吃的钱最多(排序)

sort_total_amounts = Group_sum.sort_values(by='total_amounts',ascending=False)
sort_total_amounts['total_amounts'][:10].plot(kind = 'bar'
plt,xlabel('订单ID')
plt.ylabel('消费金额')
plt.title('消费金额前10')

加大消费力度,大众的消费 总数 取中间的位置 平均的

总价除以消费数量 等于消费单价

3, #哪个订单的平均消费最贵

Group_sum['average'] = Group_sum['total_amount'] / Group_sum['counts']
sort_average = Group_sum.sort_values(by='average',ascending=False)
sort_average['average'][:].plot(kind = 'bar',fontsize = 12)
plt,xlabel('订单ID')
plt.ylabel('消费单价')
plt.title('订单消费单价前10')

分析:
从时间维度
1,#一天当中什么时间段,点菜量比较集中(hour)

data['hourcount'] = 1 #新列,用作计数器
data['time'] = pd.to_datetime(data['place_order_time']) #将时间转换成日期类型存储
data['hour'] = data['time'].map(lambda x:x.hour)
gp_by_hour = data.groupby(by='hour').count()['hourcount']
gp_py_hour.plot(kind = 'bar')
plt,xlabel('小时')
plt.ylabel('下单数量')
plt.title('下单数与小时的关系图')

2,哪一天订餐数量最多

data['daycount'] = 1
data['day'] = data['time'].map(lambda x:x.day)
gp_by_day = data.groupby(by='day').count()['daycount']
gp_py_day.plot(kind = 'bar')
plt,xlabel('日期')
plt.ylabel('点菜数量')
plt.title('点菜数量与日期的关系图')

3,星期几就餐人数最多

data['weekcount'] = 1
data['weekday'] = data['time'].map(lambda x:x.weekday)
gp_by_weekday = data.groupby(by='weekday').count()['weekdaycount']
gp_py_weekday.plot(kind = 'bar')
plt,xlabel('星期')
plt.ylabel('点菜数量')
plt.title('点菜数量与星期的关系图')

这篇关于用python做餐饮业的数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500566

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指