OpenCV + CPP 系列(廿五)模板匹配(Template Match)

2023-12-16 05:30

本文主要是介绍OpenCV + CPP 系列(廿五)模板匹配(Template Match),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 效果演示

算法详情见: 模板匹配 官方给出了好的示例。

  1. 平方差匹配 method=CV_TM_SQDIFF
    这类方法利用平方差来进行匹配,最好匹配为0.匹配越差,匹配值越大.
    R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) − I ( x + x ′ , y + y ′ ) ) 2 R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2 R(x,y)=x,y(T(x,y)I(x+x,y+y))2

  2. 标准平方差匹配 method=CV_TM_SQDIFF_NORMED
    R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) − I ( x + x ′ , y + y ′ ) ) 2 ∑ x ′ , y ′ T ( x ′ , y ′ ) 2 ⋅ ∑ x ′ , y ′ I ( x + x ′ , y + y ′ ) 2 R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}} R(x,y)=x,yT(x,y)2x,yI(x+x,y+y)2 x,y(T(x,y)I(x+x,y+y))2

  3. 相关匹配 method=CV_TM_CCORR
    这类方法采用模板和图像间的乘法操作,所以较大的数表示匹配程度较高, 0标识最坏的匹配效果.
    R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) ⋅ I ( x + x ′ , y + y ′ ) ) R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y')) R(x,y)=x,y(T(x,y)I(x+x,y+y))

  4. 标准相关匹配 method=CV_TM_CCORR_NORMED
    R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) ⋅ I ′ ( x + x ′ , y + y ′ ) ) ∑ x ′ , y ′ T ( x ′ , y ′ ) 2 ⋅ ∑ x ′ , y ′ I ( x + x ′ , y + y ′ ) 2 R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}} R(x,y)=x,yT(x,y)2x,yI(x+x,y+y)2 x,y(T(x,y)I(x+x,y+y))

  5. 相关匹配 method=CV_TM_CCOEFF
    这类方法将模版对其均值的相对值与图像对其均值的相关值进行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性(随机序列).
    R ( x , y ) = ∑ x ′ , y ′ ( T ′ ( x ′ , y ′ ) ⋅ I ( x + x ′ , y + y ′ ) ) R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I(x+x',y+y')) R(x,y)=x,y(T(x,y)I(x+x,y+y))
    其中
    T ′ ( x ′ , y ′ ) = T ( x ′ , y ′ ) − 1 / ( w ⋅ h ) ⋅ ∑ x ′ ′ , y ′ ′ T ( x ′ ′ , y ′ ′ ) I ′ ( x + x ′ , y + y ′ ) = I ( x + x ′ , y + y ′ ) − 1 / ( w ⋅ h ) ⋅ ∑ x ′ ′ , y ′ ′ I ( x + x ′ ′ , y + y ′ ′ ) \begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array} T(x,y)=T(x,y)1/(wh)x,yT(x,y)I(x+x,y+y)=I(x+x,y+y)1/(wh)x,yI(x+x,y+y)

  6. 标准相关匹配 method=CV_TM_CCOEFF_NORMED
    R ( x , y ) = ∑ x ′ , y ′ ( T ′ ( x ′ , y ′ ) ⋅ I ′ ( x + x ′ , y + y ′ ) ) ∑ x ′ , y ′ T ′ ( x ′ , y ′ ) 2 ⋅ ∑ x ′ , y ′ I ′ ( x + x ′ , y + y ′ ) 2 R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} } R(x,y)=x,yT(x,y)2x,yI(x+x,y+y)2 x,y(T(x,y)I(x+x,y+y))

函数签名:

void matchTemplate(
InputArray image,     源图像,必须是8-bit或者32-bit浮点数图像
InputArray templ,     模板图像,类型与输入图像一致
OutputArray result,     输出结果,必须是单通道32位浮点数,假设源图像WxH,模板图像wxh, 则结果必须为W-w+1, H-h+1的大小。
int method,        匹配方法
InputArray mask = noArray()  掩码
);

头文件 quick_opencv.h:声明类与公共函数

#pragma once
#include <opencv2\opencv.hpp>
using namespace cv;class QuickDemo {
public:...void template_match_Demo(Mat& image1, Mat& image2);};

主函数调用该类的公共成员函数

#include <opencv2\opencv.hpp>
#include <quick_opencv.h>
#include <iostream>
using namespace cv;int main(int argc, char** argv) {Mat src1 = imread("D:\\Desktop\\pandas_small22.png");Mat src2 = imread("D:\\Desktop\\pandas_small22_test1.png");if (src1.empty()) {printf("Could not load images src1...\n");return -1;}if (src2.empty()) {printf("Could not load images src2...\n");return -1;}QuickDemo qk;qk.template_match_Demo(src1, src2);waitKey(0);destroyAllWindows();return 0;
}

源文件 quick_demo.cpp:实现类与公共函数

效果演示
#include <quick_opencv.h>
#include <opencv2/dnn.hpp>
#include <iostream>using namespace cv;
using namespace std;class templ_match {
public:Mat image_src;Mat image_tem;const char* OUTPUT_t;const char* MATCH_t;
};static void on_match(int method_index, void* templ_match_) {Mat img_display;templ_match match_info = *((templ_match*)templ_match_);Mat src = match_info.image_src;Mat templ = match_info.image_tem;src.copyTo(img_display);int result_rows = src.rows - templ.rows + 1;int result_cols = src.cols - templ.cols + 1;Mat result = Mat::zeros(src.cols, src.rows, CV_32FC1);matchTemplate(src, templ, result, method_index, Mat());normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());double minValue, maxValue;Point minLoc, maxLoc;Point matcLoc;minMaxLoc(result, &minValue, &maxValue, &minLoc, &maxLoc, Mat());if ((method_index == TM_SQDIFF) || (method_index == TM_SQDIFF_NORMED)) {matcLoc = minLoc;}else{matcLoc = maxLoc;}rectangle(img_display, matcLoc, Point(matcLoc.x + templ.cols, matcLoc.y + templ.rows), Scalar::all(0), 2, LINE_AA);rectangle(result, matcLoc, Point(matcLoc.x + templ.cols, matcLoc.y + templ.rows), Scalar::all(0), 2, LINE_AA);imshow(match_info.OUTPUT_t, result);imshow(match_info.MATCH_t, img_display);
}void QuickDemo::template_match_Demo(Mat& image, Mat& test1) {const char* OUTPUT_WIN = "result image";const char* MATCH_WIN = "match demo";namedWindow(OUTPUT_WIN, WINDOW_AUTOSIZE);namedWindow(MATCH_WIN, WINDOW_AUTOSIZE);templ_match match_info;match_info.OUTPUT_t = OUTPUT_WIN;match_info.MATCH_t = MATCH_WIN;match_info.image_src = image;match_info.image_tem = test1;int current_Method = 0;createTrackbar("Algo_type", MATCH_WIN, &current_Method, 5, on_match, &match_info);on_match(current_Method, &match_info);
}

在这里插入图片描述

这篇关于OpenCV + CPP 系列(廿五)模板匹配(Template Match)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499273

相关文章

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

Python实现Word文档自动化的操作大全(批量生成、模板填充与内容修改)

《Python实现Word文档自动化的操作大全(批量生成、模板填充与内容修改)》在职场中,Word文档是公认的好伙伴,但你有没有被它折磨过?批量生成合同、制作报告以及发放证书/通知等等,这些重复、低效... 目录重复性文档制作,手动填充模板,效率低下还易错1.python-docx入门:Word文档的“瑞士

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文