GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)

本文主要是介绍GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

之前发表了两篇关于影像修复的文章,并且制作了APP,大家可以去看以下的两篇博客来了解具体的研究内容和整个方法的有效性:

Google Earth Engine APP——影像条带色差、色调不均匀等现象解决方案Landsat5 NDWI Image Restoration APP_ndwi不能识别泛红水体怎么办-CSDN博客

基于GEE云平台一种快速修复Landsat影像条带色差的方法_gee平台-CSDN博客

影像条带色差产生的主要原因有以下几点:

1. 光学系统问题:光学系统中的透镜、滤光片等元件可能存在偏差或缺陷,导致不同波长的光在传输过程中被聚焦的位置不一致,从而产生色差。

2. 图像传感器问题:图像传感器中的像素单元可能对不同波长的光的响应度不同,导致不同波长的光在图像传感器上形成的图像亮度不一致,从而产生色差。

3. 色彩处理问题:在图像的处理过程中,可能会对不同波长的光进行不同的处理,如增强某个颜色通道的亮度或饱和度,从而导致色差。

4. 环境光影响:在拍摄现场,环境光的波长和强度可能有所不同,对拍摄的影像产生影响,从而产生色差。

总的来说,影像条带色差的产生主要是由于光学系统、图像传感器、色彩处理和环境光等多个因素综合作用的结果。

函数:

本文里面的主要使用的函数众多,包含了归一化函数,直方图统计,机器学习方法以及图形展示等 

normalizedDifference(bandNames)

Computes the normalized difference between two bands. If the bands to use are not specified, uses the first two bands. The normalized difference is computed as (first − second) / (first + second). Note that the returned image band name is 'nd', the input image properties are not retained in the output image, and a negative pixel value in either input band will cause the output pixel to be masked. To avoid masking negative input values, use ee.Image.expression() to compute normalized difference.

Arguments:

this:input (Image):

The input image.

bandNames (List, default: null):

A list of names specifying the bands to use. If not specified, the first and second bands are used.

Returns: Image

CLOSE

ee.ImageCollection.fromImages(images)

Returns the image collection containing the given images.

Arguments:

images (List):

The images to include in the collection.

Returns: ImageCollection

ui.Chart.image.histogram(image, regionscalemaxBucketsminBucketWidthmaxRawmaxPixels)

Generates a Chart from an image. Computes and plots histograms of the values of the bands in the specified region of the image.

  • X-axis: Histogram buckets (of band value).

  • Y-axis: Frequency (number of pixels with a band value in the bucket).

Returns a chart.

Arguments:

image (Image):

The image to generate a histogram from.

region (Feature|FeatureCollection|Geometry, optional):

The region to reduce. If omitted, uses the entire image.

scale (Number, optional):

The pixel scale used when applying the histogram reducer, in meters.

maxBuckets (Number, optional):

The maximum number of buckets to use when building a histogram; will be rounded up to a power of 2.

minBucketWidth (Number, optional):

The minimum histogram bucket width, or null to allow any power of 2.

maxRaw (Number, optional):

The number of values to accumulate before building the initial histogram.

maxPixels (Number, optional):

If specified, overrides the maximum number of pixels allowed in the histogram reduction. Defaults to 1e6.

Returns: ui.Chart

setSeriesNames(seriesNames, seriesIndex)

Returns a copy of this chart with updated series names.

Arguments:

this:ui.chart (ui.Chart):

The ui.Chart instance.

seriesNames (Dictionary|Dictionary<String>|List|List<String>|String):

New series names. If it's a string, the name of the series at seriesIndex is set to seriesNames. If it's a list, the value at index i in the list is used as a label for series number i. If it's a dictionary or an object, it's treated as a map from existing series names to new series names. In the last two cases, seriesIndex is ignored.

seriesIndex (Number, optional):

The index of the series to rename. Ignored if seriesNames is a list or dictionary. Series are 0-indexed.

Returns: ui.Chart

ee.Reducer.histogram(maxBucketsminBucketWidthmaxRaw)

Create a reducer that will compute a histogram of the inputs.

Arguments:

maxBuckets (Integer, default: null):

The maximum number of buckets to use when building a histogram; will be rounded up to a power of 2.

这篇关于GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499024

相关文章

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

如何使用Spring boot的@Transactional进行事务管理

《如何使用Springboot的@Transactional进行事务管理》这篇文章介绍了SpringBoot中使用@Transactional注解进行声明式事务管理的详细信息,包括基本用法、核心配置... 目录一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解三、核心配置参数1. 传播行为(

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解