DWZ中添加对其它状态的拦截

2023-12-15 14:08
文章标签 拦截 状态 dwz

本文主要是介绍DWZ中添加对其它状态的拦截,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

默认DWZ添加了对执行正确、错误以及登录超时的拦截和友好提示,由于需要一个加入权限的东西,想做统一的处理,看了下代码,找到这个地方dwz.cors.js大概192行左右加入下列代码:


红色地方就是我圈出来,加入的。在统一的filter地方根据url判断没权限的话直接返回:

array('statusCode'=>403, 'message'=>'您无权该操作', "navTabId"=>"","forwardUrl"=>"","callbackType"=>"closeCurrent", "_t"=>$this->getRequest()->getParam("_t"))


由于这个地方没办法判断是tab还是dialog,而他们的关闭方式不一样,所以我对每个a都加上了个参数,标明了当前是dialog打开还是tab打开。。没别的好方法了。。我看到下面有个例子

if ($.pdialog) $.pdialog.checkTimeout();
if (navTab) navTab.checkTimeout();

猜测了下是不是判断当前打开的是dialog还是nav,但是我用这个方法不行。。



这篇关于DWZ中添加对其它状态的拦截的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/496710

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

MySQL 中的服务器配置和状态详解(MySQL Server Configuration and Status)

《MySQL中的服务器配置和状态详解(MySQLServerConfigurationandStatus)》MySQL服务器配置和状态设置包括服务器选项、系统变量和状态变量三个方面,可以通过... 目录mysql 之服务器配置和状态1 MySQL 架构和性能优化1.1 服务器配置和状态1.1.1 服务器选项

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;