【正点原子STM32连载】第十三章 串口通信实验 摘自【正点原子】APM32E103最小系统板使用指南

本文主要是介绍【正点原子STM32连载】第十三章 串口通信实验 摘自【正点原子】APM32E103最小系统板使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)实验平台:正点原子APM32E103最小系统板
2)平台购买地址:https://detail.tmall.com/item.htm?id=609294757420
3)全套实验源码+手册+视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban

第十三章 串口通信实验

本章将介绍使用串口进行数据的收发操作,具体实现APM32E103与上位机软件的数据通信,APM32E103将接受自上位机软件的数据原原本本地发送回给上位机软件。通过本章的学习,读者将学习到USART和GPIO引脚复用的使用。
本章分为如下几个小节:
13.1 硬件设计
13.2 程序设计
13.3 下载验证

13.1 硬件设计
13.1.1 例程功能

  1. 回显串口接收到的数据
  2. 每间隔一定时间,串口发送一段提示信息
  3. LED0闪烁,提示程序正在运行
    13.1.2 硬件资源
  4. USART1(PA9、PA10连接至板载USB转串口芯片上)
  5. LED
    LED0 - PB5
    13.1.3 原理图
    本章实验使用的USART1通过跳线帽与板载的USB转串口芯片连接,其原理图如下图所示:

在这里插入图片描述

图13.1.3.1 USART1与USB转串口芯片跳线帽连接

因此在进行本章实验之前,需确保上图位置中正确安装了跳线帽
在这里插入图片描述

图13.1.3.2 串口通信跳线帽位置
板载的USB转串口芯片的USB接口通过板载的USB UART端口引出,其原理图如下图所示:
在这里插入图片描述

图13.1.3.3 USB转串口芯片相关原理图
从以上原理图可以看出,PA9引脚和PA10引脚分别作为发送和接收引脚分别与USB转串口芯片的接收和发送引脚进行连接,USB转串口芯片再通过一对USB差分信号连接至USB UART的接口,这样一来,APM32E103就可以通过USB与PC上位机软件进行串口通信了。
13.2 程序设计
13.2.1 Geehy标准库的GPIO驱动
针对本章的实验要求,需要将串口发送引脚配置成复用推挽输出模式,而串口接收引脚配置成上拉输入模式。
13.2.2 Geehy标准库的USART驱动
Geehy标准库的USART驱动提供了操作APM32E103片上USART的各种API函数,其中就包括配置USART、使能USART等函数,本章实验还是能了USART中断用于接收USART数据。配置并使用USART收发数据的步骤。配置USART的具体步骤如下所示:
①:配置USART
②:使能USART
③:使能USART接收缓冲区非空中断
④:使能USART中断,并配置其相关的中断优先级
在Geehy标准库中对应的驱动函数如下:
①:配置USART
该函数用于配置USART的各项参数,其函数的原型如下所示:
void USART_Config(USART_T* usart, USART_Config_T* usartConfig);
该函数的形参描述,如下表所示:
在这里插入图片描述

表13.2.2.1 函数USART_Config()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表13.2.2.2 函数USART_Config()返回值描述
该函数使用USART_Config_T类型的结构体变量传入USART外设的配置参数,该结构体的定义如下所示:

/*** @brief   USART Word Length define*/
typedef enum
{USART_WORD_LEN_8B = 0,					/* 8位数据长度 */USART_WORD_LEN_9B = BIT12				/* 9位数据长度 */
} USART_WORD_LEN_T;/*** @brief   USART Stop bits define*/
typedef enum
{USART_STOP_BIT_1   = 0,				    /* 1比特停止位 */USART_STOP_BIT_0_5 = BIT12,				/* 0.5比特停止位 */USART_STOP_BIT_2   = BIT13,				/* 2比特停止位 */USART_STOP_BIT_1_5 = BIT12 | BIT13		/* 1.5比特停止位 */
} USART_STOP_BIT_T;/*** @brief   USART Parity define*/
typedef enum
{USART_PARITY_NONE  = 0,					/* 无校验 */USART_PARITY_EVEN  = BIT10,				/* 偶校验 */USART_PARITY_ODD   = BIT10 | BIT9		/* 奇校验 */
} USART_PARITY_T;/*** @brief   USART mode define*/
typedef enum
{USART_MODE_RX      = BIT2,				/* 接收模式 */USART_MODE_TX      = BIT3,				/* 发送模式 */USART_MODE_TX_RX   = BIT2 | BIT3		/* 收发模式 */
} USART_MODE_T;/*** @brief   USART hardware flow control define*/
typedef enum
{USART_HARDWARE_FLOW_NONE    = 0,		/* 无硬件流控 */USART_HARDWARE_FLOW_RTS     = BIT8,	/* RTS硬件流控 */USART_HARDWARE_FLOW_CTS     = BIT9,			/* CTS硬件流控 */USART_HARDWARE_FLOW_RTS_CTS = BIT8 | BIT9		/* RTS和CTS硬件流控 */
} USART_HARDWARE_FLOW_T;/*** @brief   USART Config struct definition*/
typedef struct
{uint32_t                  baudRate;           /* 通信波特率 */USART_WORD_LEN_T          wordLength;         /* 数据宽度 */USART_STOP_BIT_T          stopBits;           /* 停止位 */USART_PARITY_T            parity;             /* 校验位 */USART_MODE_T              mode;               /* 模式 */USART_HARDWARE_FLOW_T     hardwareFlow;       /* 硬件流控 */
} USART_Config_T;
该函数的使用示例,如下所示:
#include "apm32e10x.h"
#include "apm32e10x_usart.h"void example_fun(void)
{USART_Config_T usart_init_struct;/* 配置USART1 */usart_init_struct.baudRate		= 115200;usart_init_struct.wordLength	= USART_WORD_LEN_8B;usart_init_struct.stopBits		= USART_STOP_BIT_1;usart_init_struct.parity		= USART_PARITY_NONE;usart_init_struct.mode			= USART_MODE_TX_RX;usart_init_struct.hardwareFlow	= USART_HARDWARE_FLOW_NONE;USART_Config(USART1, &usart_init_struct);
}

②:使能USART
该函数用于使能USART外设,其函数原型如下所示:
void USART_Enable(USART_T* usart);
该函数的形参描述,如下表所示:
形参 描述
usart 指向USART外设结构体的指针
例如:USART1、UART4等(在apm32e10x.h文件中有定义)
表13.2.2.3 函数USART_Enable()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表13.2.2.4 函数USART_Enable()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_usart.h"void example_fun(void)
{/* 使能USART1 */USART_Enable(USART1);
}

③:使能USART指定的中断
该函数用于使能USART指定的中断,其函数原型如下所示:
void USART_EnableInterrupt(USART_T* usart, USART_INT_T interrupt);
该函数的形参描述,如下表所示:
形参 描述
usart 指向USART外设结构体的指针
例如:USART1、UART4等(在apm32e10x.h文件中有定义)
interrupt 指定的USART中断源
例如:USART_INT_RXBNE、USART_INT_TXC等(在apm32e10x_usart.h文件中有定义)
表13.2.2.5 函数USART_EnableInterrupt()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表13.2.2.6 函数USART_EnableInterrupt()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_usart.h"void example_fun(void)
{/* 使能USART1的接收缓冲区非空中断 */USART_EnableInterrupt(USART1, USART_INT_RXBNE);/* 使能USART1的发送完成中断 */USART_EnableInterrupt(USART1, USART_INT_TXC);
}

④:配置USART中断
请见第12.2.2小节中配置中断的相关内容。
使用USART发送数据的具体步骤如下所示:
①:等待USART发送缓冲区为空
②:往USART发送缓冲区写入数据
在Geehy标准库中对应的驱动函数如下:
①:获取USART状态标志
该函数用于获取USART的状态标志,其函数原型如下所示:
uint8_t USART_ReadStatusFlag(USART_T* usart, USART_FLAG_T flag);
该函数的形参描述,如下表所示:
形参 描述
usart 指向USART外设结构体的指针
例如:USART1、UART4等(在apm32e10x.h文件中有定义)
flag 指定获取的状态标志
例如:USART_FLAG_RXBNE、USART_FLAG_TXC等(在apm32e10x_usart.h文件中有定义)
表13.2.2.7 函数USART_ReadStatusFlag()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
SET 状态标志有效
RESET 状态标志无效
表13.2.2.8 函数USART_ReadStatusFlag()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_usart.h"void example_fun(void)
{uint8_t status;/* 读取USART1外设的发送缓冲区为空状态标志 */status = USART_ReadStatusFlag(USART1, USART_FLAG_TXBE);if (status == SET){/* Do something. */}else{/* Do something. */}
}

②:USART发送单个数据
该函数用于使用USART发送单个数据,其函数原型如下所示:
void USART_TxData(USART_T* usart, uint16_t data);
该函数的形参描述,如下表所示:
形参 描述
usart 指向USART外设结构体的指针
例如:USART1、UART4等(在apm32e10x.h文件中有定义)
data 待发送的数据
表13.2.2.9 函数USART_TxData()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表13.2.2.10 函数USART_TxData()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_usart.h"void example_fun(void)
{uint8_t data;/* 准备数据 */data = 0xFF;/* 通过USART1发送单个数据 */USART_TxData(USART1, (uint16_t)data);
}

使用USART接收数据的具体步骤如下所示:
①:判断USART接收缓冲区非空
②:读取USART接收缓冲区中的数据
在Geehy标准库中对应的函数如下:
①:获取USART状态标志
请见第13.2.2小节中获取USART状态标志的相关内容。
②:获取USART接收到的单个数据
该函数用于获取USART获取到的单个数据,其函数原型如下所示:
uint16_t USART_RxData(USART_T* usart);
该函数的形参描述,如下表所示:
形参 描述
usart 指向USART外设结构体的指针
例如:USART1、UART4等(在apm32e10x.h文件中有定义)
表13.2.2.11 函数USART_RxData()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
uint16_t类型数据 获取到的USART接收到的一个数据
表13.2.2.12 函数USART_RxData()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_usart.h"void example_fun(void)
{uint8_t data;/* 接收USART1接收到的一个数据 */data = USART_RxData(USART1);/* Do something. */
}

13.2.3 串口通讯驱动
本实验的串口通信驱动主要是配置USART1并完成一些相关的初始化操作,并支持将printf函数重定向到USART1进行输出,同时向应用层提供了一个数据接收缓冲区和接收完成标志,通过这些,应用层就能够很方便地使用USART1进行数据传输了,本章实验中,串口通讯驱动的驱动代码包括usart.c和usart.h两个文件。
串口通讯驱动中,对GPIO、USART的相关宏定义,如下所示:
/* 引脚和串口定义 */

#define USART_TX_GPIO_PORT          GPIOA
#define USART_TX_GPIO_PIN           GPIO_PIN_9
#define USART_TX_GPIO_CLK_ENABLE()  do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA); }while(0)#define USART_RX_GPIO_PORT          GPIOA
#define USART_RX_GPIO_PIN           GPIO_PIN_10
#define USART_RX_GPIO_CLK_ENABLE()  do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA); }while(0)#define USART_UX                    USART1
#define USART_UX_IRQn               USART1_IRQn
#define USART_UX_IRQHandler         USART1_IRQHandler
#define USART_UX_CLK_ENABLE()       do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_USART1); }while(0)

串口通讯驱动中,USART1的初始化函数,如下所示:

/*** @brief       初始化串口* @param       baudrate: 通讯波特率* @retval      无*/
void usart_init(uint32_t baudrate)
{GPIO_Config_T gpio_init_struct = {0};USART_Config_T usart_init_struct = {0};/* 使能时钟 */USART_UX_CLK_ENABLE();USART_TX_GPIO_CLK_ENABLE();USART_RX_GPIO_CLK_ENABLE();/* 初始化串口发送引脚 */gpio_init_struct.pin = USART_TX_GPIO_PIN;gpio_init_struct.speed = GPIO_SPEED_50MHz;gpio_init_struct.mode = GPIO_MODE_AF_PP;GPIO_Config(USART_TX_GPIO_PORT, &gpio_init_struct);/* 初始化串口接收引脚 */gpio_init_struct.pin = USART_RX_GPIO_PIN;gpio_init_struct.speed = GPIO_SPEED_50MHz;gpio_init_struct.mode = GPIO_MODE_IN_PU;GPIO_Config(USART_RX_GPIO_PORT, &gpio_init_struct);/* 初始化串口 */usart_init_struct.baudRate = baudrate;                      /* 通讯波特率 */usart_init_struct.wordLength = USART_WORD_LEN_8B;           /* 数据位 */usart_init_struct.stopBits = USART_STOP_BIT_1;              /* 停止位 */usart_init_struct.parity = USART_PARITY_NONE;               /* 校验位 */usart_init_struct.mode = USART_MODE_TX_RX;                  /* 收发模式 */usart_init_struct.hardwareFlow = USART_HARDWARE_FLOW_NONE;  /* 无硬件流控 */USART_Config(USART_UX, &usart_init_struct);USART_Enable(USART_UX);#if (USART_EN_RX != 0)USART_EnableInterrupt(USART_UX, USART_INT_RXBNE);USART_ClearStatusFlag(USART_UX, USART_FLAG_RXBNE);NVIC_EnableIRQRequest(USART_UX_IRQn, 0, 0);
#endif  
}

在串口通信的初始化函数中,在使能USART1收发引脚的GPIO端口时钟和USART1外设时钟后,配置了USART1发送引脚(USART_TX_GPIO_PORT)为复用推挽输出模式,并且配置了USART1接收引脚(USART_RX_GPIO_PORT)为上拉输入模式。在最后使能了USART1,同时也配置了USART1的接收缓冲区非空中断,这么一来,USART1的中断回调函数就会在USART1接收到数据的时候被调用。
串口通讯驱动中,USART1的中断回调函数,如下所示:

/*** @brief       串口中断服务函数* @param       无* @retval      无*/
void USART_UX_IRQHandler(void)
{if (USART_ReadIntFlag(USART_UX, USART_INT_RXBNE) == SET){
#if (SYS_SUPPORT_OS != 0)OSIntEnter();
#endifg_rx_buffer[0] = USART_RxData(USART_UX);    /* 接收一字节数据 */if ((g_usart_rx_sta & 0x8000) == 0)         /* 接收未完成 */{if (g_usart_rx_sta & 0x4000)            /* 接收到了0x0D */{if (g_rx_buffer[0] != 0x0A){g_usart_rx_sta = 0;             /* 接收错误,重新开始接收 */}else{g_usart_rx_sta |= 0x8000;       /* 接收完成 */}}else                                    /* 还未接收到0x0D */{if (g_rx_buffer[0] == 0x0D){g_usart_rx_sta |= 0x4000;}else{g_usart_rx_buf[g_usart_rx_sta & 0x3FFF] = g_rx_buffer[0];g_usart_rx_sta++;if (g_usart_rx_sta > (USART_REC_LEN - 1)){g_usart_rx_sta = 0;         /* 接收错误,重新开始接收 */}}}}#if (SYS_SUPPORT_OS != 0)OSIntExit();
#endifUSART_ClearIntFlag(USART_UX, USART_INT_RXBNE);}}

在USART1的中断回调函数中主要用于读取USART1接收到的数据,并将其逐一存入接收的缓冲区,并在接收到“回车”和“换行”后标志数据接收完成。
13.2.4 实验应用代码
本实验的应用代码,如下所示:

int main(void)
{uint8_t len, i;uint16_t times = 0;NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_4);  /* 设置中断优先级分组为组4 */sys_apm32_clock_init(15);                         /* 配置系统时钟 */delay_init(120);                                  /* 初始化延时功能 */usart_init(115200);                               /* 初始化串口 */led_init();                                       /* 初始化LED */while (1){if (g_usart_rx_sta & 0x8000)                  /* 接收到数据 */{len = g_usart_rx_sta & 0x3fff;            /* 获取此次接收到数据的长度 */printf("\r\n您发送的信息为:\r\n");for (i = 0;i < len;i++){USART_TxData(USART_UX, g_usart_rx_buf[i]);while (USART_ReadStatusFlag(USART_UX, USART_FLAG_TXBE)==RESET);}printf("\r\n\r\n");                      /* 插入换行 */g_usart_rx_sta = 0;}else{times++;if (times % 1000 == 0){printf("\r\n正点原子 APM32E103最小系统板 串口实验\r\n");printf("正点原子@ALIENTEK\r\n\r\n\r\n");}if (times % 200 == 0){printf("请输入数据,以回车键结束\r\n");}if (times % 30 == 0){LED0_TOGGLE();                     /* LED0翻转,提示系统正在运行 */}delay_ms(10);}}
}

本实验的实验代码很简单,在完成初始化后,就不断地通过串口通信驱动提供的数据接收完成标志判断数据是否接收完毕,若还未完成数据接收,则每间隔一段时间就使用printf函数通过USART1打印一段提示信息,若数据接收完毕,则将数据原原本本地使用printf函数通过USART1打印出去,实现数据的回显功能。
13.3 下载验证
在完成编译和烧录操作后,需要将开发板的USB UART接口与PC的USB接口通过具有数据传输功能的数据线进行连接,并保证13.1.3小节中指示跳线帽已正确安装。接着打开PC上的ATK-XCOM串口调试助手软件,选择好正确的COM端口和相关的配置后,就能看到串口调试助手上每间隔一段时间就打印一次“请输出数据,以回车键结束”,接下来就可以根据提示通过串口调试助手发送一段任意的数据(以回车换行结束),随后立马就能看到串口调试助手上显示发送出去的数据,这就是本实验实现的数据回显功能。

这篇关于【正点原子STM32连载】第十三章 串口通信实验 摘自【正点原子】APM32E103最小系统板使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/496597

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl