【论文阅读】深度学习方法在数字岩石技术中的应用进展

2023-12-15 02:04

本文主要是介绍【论文阅读】深度学习方法在数字岩石技术中的应用进展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【论文名称】Advances in the application of deep learning methods to digital rock technology
深度学习方法在数字岩石技术中的应用进展
【论文来源】EI检索
【作者单位】长江大学地球物理与油气资源学院、加拿大阿尔伯塔大学土木与环境工程系、东北石油大学地球科学学院、长江大学油气资源勘探技术重点实验室
【论文原文】https://doi.org/10.46690/ager.2023.04.02

文章目录

  • 一、 三维数字岩石重建
  • 二、 图像分辨率增强
  • 三、 图像分割
  • 四、 数字岩石参数预测
  • 五、 总结

一、 三维数字岩石重建

传统的数字岩石重建方法:物理实验(电镜扫描)、数值重建(模拟退火法、马尔可夫链蒙特卡罗法、截断高斯随机场法、多点统计量)、混合建模(结合前两种,物理获取2D数据,数值重建三维数字岩石)
深度学习算法主要包括生成对抗网络GANs和变分自动编码器VAEs。
在这里插入图片描述

(图1 GAN网络结构)

在这里插入图片描述

(表1 不同GAN网络变形的优缺点比较)

二、 图像分辨率增强

由于micro-CT的局限性,高分辨率(HR)图像的视场较小,大视场图像的分辨率较低。
深度学习方法:超分辨率卷积神经网络(SRCNN,衍生出EDSR[enhanced deep SR]、WDSR[wide-activation deep SR])、超高分辨率周期一致性生成对抗网络(SR-CycleGAN)、混合时空深度学习(HSDL)等。
在这里插入图片描述

(图2 EDSR结构图)

在这里插入图片描述

(图3 WDSR结构图)

在这里插入图片描述

(图4 SR-CycleGAN的结构包括(a)两个发生器(GX: Y→X和GY: X→Y)和两个相关鉴别器(DX和DY),(b)正向循环一致性:X≈GX (GY (X))。(c)后向循环一致性:y≈GY (GX (y))。)

在这里插入图片描述

(图5 SR-CycleGAN的离线训练阶段(下)和在线测试阶段(上))

在这里插入图片描述

(图6 LR岩石图像:(上)双三次插值生成的HR结果,(中)SRCycleGAN生成的HR结果,(下)地面真相)

在这里插入图片描述

(图7 图像分辨率增强方法比较:(a)参考图像,(b)低分辨率输入图像,(c)规则深度学习图像,(d)双三次插值图像,(e) HSDL生成图像)

SRCycleGAN论文名称:Super-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networks
HSDL论文名称:Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm

三、 图像分割

传统分割方法:多阈值分割、边缘检测、聚类分割
深度学习方法:卷积神经网络CNN、全卷积网络FCN、Unet、DeepLab、SegNet、Unet++等
在这里插入图片描述

(图8 Unet网络架构。左侧为编码器,右侧为解码器,双方采用跳过连接层进行连接)

在这里插入图片描述

(图9 最大池索引用于SegNet中的上采样低分辨率图)

在这里插入图片描述

(图10 SegNet的基本内部结构)

利用支持向量机、最近邻、随机森林、人工神经网络和U-Net网络模型等多种图像分割方法对页岩SEM图像进行多组分分割。
SegNet论文名称:Application of machine learning techniques in mineral classification for scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) images.
在这里插入图片描述

(表2 不同模型的预测结果)

在这里插入图片描述

(图11 包括四个规则的U-Net的U-Net++模型结构)

U n e t + + \pmb{Unet++} Unet++论文名称:Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM
在这里插入图片描述

(图12 不同分割方法的分割结果比较)

四、 数字岩石参数预测

深度学习方法:
Tembely等人(2021)使用 C N N \pmb{CNN} CNN来预测三维CT图像的孔隙度、地层因子和渗透率,精度很高。
论文名称:Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography
Rabbani等人(2020)提出了一种基于 C N N \pmb{CNN} CNN的工作流,用于估计二值化3D CT图像的各种形态、水力和电气特性。
论文名称:DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials
在这里插入图片描述

(图13 用于参数预测的CNN网络示意图)

数值模拟方法:Wang et al. (2019b)基于OpenFOAM框架建立了三维孔隙网络模型,计算了孔隙网络模型的孔隙度和渗透率。论文名称:Researches on the pore permeability prediction method of 3D digital cores based on machine learning。

五、 总结

     本文综述了深度学习方法在三维数字岩石重建、图像分辨率增强、图像分割和数字岩石参数预测等方面的应用。尽管数字岩石技术已经发展了几十年,但仍有许多研究挑战有待解决。本研究中提到的方法已经部分克服了重建、分辨率增强、分割和参数预测任务所带来的挑战。然而,这些方法仍然不能同时考虑训练速度、图像大小和建模精度。因此,人工智能方法在数字岩石领域的应用应得到更全面的发展。数字岩石的重建应受到物理性质的约束,以确保生成的样品的真实性和多样性。目前的构件分割过程大多基于二维切片,不能保证构件在各个方向上的连续性。因此,需要考虑正交切片分割参数预测不仅要根据图像本身,还要根据孔隙度、孔隙空间分布等物理性质。此外,还可以进一步提高分割的准确性,还需要尝试预测更多的岩石参数。

    此外,随着未来智能数字油田的发展成为大势所趋,建议研究人员充分利用深度学习等人工智能方法的强大能力,对采集到的核心数据和属性进行持续学习和更新。与其他常见的数字或动物识别等机器学习任务不同,它在数字岩石领域的应用相对较新,缺乏可靠的数据。因此,有必要建立一个包含岩石数字图像及其物理性质的开源可更新数据库。这将使地质和地球物理数据的结合能够全面、系统地发展可靠的战略,将微观和局部数字岩石技术集成到宏观和整体勘探和开发过程中。

这篇关于【论文阅读】深度学习方法在数字岩石技术中的应用进展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494698

相关文章

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一