本文主要是介绍理解概率密度函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。
- 书的购买链接
- 书的勘误,优化,源代码资源
概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中,SIGAI将直观的解释概率密度函数的概念,帮你更深刻的理解它。
从随机事件说起
回忆我们在学习概率论时的经历,随机事件是第一个核心的概念,它定义为可能发生也可能不发生的事件,因此是否发生具有随机性。例如,抛一枚硬币,可能正面朝上,也可能反面朝上,正面朝上或者反面朝上都是随机事件。掷骰子,1到6这6种点数都可能朝上,每种点数朝上,都是随机事件。
与每个随机事件a关联的有一个概率值,它表示该事件发生的可能性:p(a)这个概率值必须在0到1之间,22即满足下面的不等式约束:
0<= p(a)<=1
另外,对于一次实验中所有可能出现的结果,即所有可能的随机事件,它们的概率之和必须为1:
这些随机事件不会同时发生,但必须有一件会发生。例如,对于抛硬币,不是正面朝上就是反面朝上,不会出现其他情况(这里假设硬币抛出去后不会立着),因此有:
p(正面朝上)+p(反面朝上)=1
很多时候,我们假设这些基本的随机事件发生的概率都是相等的,因此,如果有n个基本的随机事件,要使得它们发生的概率之和为1,则它们各自发生的概率都为:
对于抛硬币,正面朝上和反面朝上的概率各为1/2
这篇关于理解概率密度函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!