将VOC2012格式的数据集转为YOLOV8格式

2023-12-15 00:44

本文主要是介绍将VOC2012格式的数据集转为YOLOV8格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 1.数据集格式
    • 1.1数据集目录格式对比
    • 1.2标签格式对比
  • 2.格式转换脚本
  • 3.文件处理脚本

简介

  1. 将voc2012中xml格式的标签转为yolov8中txt格式
  2. 将转换后的图像和标签按照yolov8训练的要求整理为对应的目录结构

1.数据集格式

1.1数据集目录格式对比

(1)VOC2012的数据集文件目录如下:
在这里插入图片描述
(2)YOLOv8需要的文件目录
在这里插入图片描述
同时需要生成关于训练集、验证集和测试集图像目录的txt文件,最好是绝对路径
在这里插入图片描述
在这里插入图片描述

1.2标签格式对比

(1)voc数据集标签
在这里插入图片描述
(2)YOLO数据集标签
每一行代表一个目标框的信息:{class_index} {x_center} {y_center} {width} {height}
在这里插入图片描述

2.格式转换脚本

修改脚本中文件目录,然后运行:

python3 trans_voc_yolo.py
# -*- coding: utf-8 -*-
# 在脚本中,你需要将`voc_labels_folder`和`output_folder`两个变量设置为正确的路径
# 分别是VOC2012数据集的XML标签文件夹路径和转换后的YOLO格式标签文件夹路径。同时,你还需要根据VOC2012数据集的类别列表自定义`class_names`变量的内容。
# 执行脚本后,它会遍历VOC2012数据集的XML标签文件夹中的每个XML文件,解析其中的目标实例信息,并将它们转换为YOLO格式的txt标签文件。
# 转换后的txt文件将保存在指定的输出文件夹中,每个txt文件对应相应的XML文件。
# 请确保脚本中的文件路径正确,并提前创建好输出文件夹。运行脚本后,你会在输出文件夹中得到与VOC2012数据集中的每个XML标签文件对应的YOLO格式txt标签文件。import xml.etree.ElementTree as ET
import osvoc_labels_folder = 'Annotations/'  # VOC2012的XML标签文件夹路径
output_folder = 'yolo_labels/'  # 转换后的YOLO格式标签文件夹路径
class_names = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable','dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # 类别名称列表if not os.path.exists(output_folder):os.makedirs(output_folder)for xml_file in os.listdir(voc_labels_folder):tree = ET.parse(os.path.join(voc_labels_folder, xml_file))root = tree.getroot()image_width = int(root.find('size/width').text)image_height = int(root.find('size/height').text)txt_file = xml_file.replace('.xml', '.txt')txt_path = os.path.join(output_folder, txt_file)with open(txt_path, 'w') as f:for obj in root.findall('object'):class_name = obj.find('name').textclass_index = class_names.index(class_name)bbox = obj.find('bndbox')x_min = int(float(bbox.find('xmin').text))y_min = int(float(bbox.find('ymin').text))x_max = int(float(bbox.find('xmax').text))y_max = int(float(bbox.find('ymax').text))x_center = (x_min + x_max) / (2 * image_width)y_center = (y_min + y_max) / (2 * image_height)width = (x_max - x_min) / image_widthheight = (y_max - y_min) / image_heightf.write(f'{class_index} {x_center} {y_center} {width} {height}\n')

3.文件处理脚本

将数据集按照7:2:1的比例划分为训练集、验证集和测试集,并生成相应的目录

python3 split_train_val_test.py
# -*- coding: utf-8 -*-import os
import random
import shutil# 设置文件路径和划分比例
root_path = "/home/lusx/data/voc_yolo/"
image_dir = "JPEGImages/"
label_dir = "labels_sum/"
train_ratio = 0.7
val_ratio = 0.2
test_ratio = 0.1# 创建训练集、验证集和测试集目录
os.makedirs("images/train", exist_ok=True)
os.makedirs("images/val", exist_ok=True)
os.makedirs("images/test", exist_ok=True)
os.makedirs("labels/train", exist_ok=True)
os.makedirs("labels/val", exist_ok=True)
os.makedirs("labels/test", exist_ok=True)# 获取所有图像文件名
image_files = os.listdir(image_dir)
total_images = len(image_files)
random.shuffle(image_files)# 计算划分数量
train_count = int(total_images * train_ratio)
val_count = int(total_images * val_ratio)
test_count = total_images - train_count - val_count# 划分训练集
train_images = image_files[:train_count]
for image_file in train_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/train/")shutil.copy(os.path.join(label_dir, label_file), "labels/train/")# 划分验证集
val_images = image_files[train_count:train_count+val_count]
for image_file in val_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/val/")shutil.copy(os.path.join(label_dir, label_file), "labels/val/")# 划分测试集
test_images = image_files[train_count+val_count:]
for image_file in test_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/test/")shutil.copy(os.path.join(label_dir, label_file), "labels/test/")# 生成训练集图片路径txt文件
with open("train.txt", "w") as file:file.write("\n".join([root_path + "images/train/" + image_file for image_file in train_images]))# 生成验证集图片路径txt文件
with open("val.txt", "w") as file:file.write("\n".join([root_path + "images/val/" + image_file for image_file in val_images]))# 生成测试集图片路径txt文件
with open("test.txt", "w") as file:file.write("\n".join([root_path + "images/test/" + image_file for image_file in test_images]))print("数据划分完成!")

这篇关于将VOC2012格式的数据集转为YOLOV8格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494492

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内