并发用户数与TPS之间的关系

2023-12-14 23:32

本文主要是介绍并发用户数与TPS之间的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:http://hitest.aliyun.com/front/share/shareDetail.htm?spm=0.0.0.0.iqDJNK&shareId=194011410749727463

1.  背景

 

在做性能测试的时候,很多人都用并发用户数来衡量系统的性能,觉得系统能支撑的并发用户数越多,系统的性能就越好;对TPS不是非常理解,也根本不知道它们之间的关系,因此非常有必要进行解释。

 

2.  术语定义

 

Ø  并发用户数:指的是现实系统中操作业务的用户,在性能测试工具中,一般称为虚拟用户数(Virutal User),注意并发用户数跟注册用户数、在线用户数有很大差别的,并发用户数一定会对服务器产生压力的,而在线用户数只是 在系统上,对服务器不产生压力,注册用户数一般指的是数据库中存在的用户数。

 

Ø  TPSTransaction Per Second,每秒事务数, 是衡量系统性能的一个非常重要的指标,

 

 

 

3.  VuTPS换算

 

Ø  简单例子:在术语中解释了TPS是每秒事务数,但是事务时要靠虚拟用户做出来的,假如1个虚拟用户在1秒内完成1笔事务,那么TPS明显就是1;如果某笔业务响应时间是1ms,那么1个用户在1秒内能完成1000笔事务,TPS就是1000了;如果某笔业务响应时间是1s,那么1个用户在1秒内只能完成1笔事务,要想达到1000TPS,至少需要1000个用户;因此可以说1个用户可以产生1000TPS1000个用户也可以产生1000TPS,无非是看响应时间快慢。

 

 

 

Ø  复杂公式:

 

试想一下复杂场景,多个脚本,每个脚本里面定义了多个事务(例如一个脚本里面有100个请求,我们把这100个连续请求叫做Action,只有第10个请求,第20个请求分别定义了事务10和事务20)具体公式如下:

 

符号代表意义:

 

Vui表示的是第i个脚本使用的并发用户数

 

Rtj表示的是第i个脚本第j个事务花费的时间,此时间会影响整个Action时间

 

Rti表示的是第i个脚本一次完成所有操作的时间,即Action时间

 

n 表示的是第n个脚本

 

m 表示的是每个脚本中m个事务

 

 

 

那么第j个事务的TPS = Vui/Rti

 

总的TPS=

 

 

 

4.  如何获取VuTPS

 

Ø  并发用户数(Vu)获取

 

新系统:没有历史数据作参考,只能通过业务部门进行评估。

 

旧系统:对于已经上线的系统,可以选取高峰时刻,在一定时间内使用系统的人数,这些人数认为属于在线用户数,并发用户数取10%就可以了,例如在半个小时内,使用系统的用户数为10000,那么取10%作为并发用户数基本就够了。

 

 

 

Ø  TPS获取

 

       新系统:没有历史数据作参考,只能通过业务部门进行评估。

 

       旧系统:对于已经上线的系统,可以选取高峰时刻,在5分钟或10分钟内,获取系统每笔交易的业务量和总业务量,按照单位时间内完成的笔数计算出TPS,即业务笔数/单位时间(5*6010*60

 

5.  如何评价系统的性能

 

针对服务器端的性能,以TPS为主来衡量系统的性能,并发用户数为辅来衡量系统的性能,如果必须要用并发用户数来衡量的话,需要一个前提,那就是交易在多长时间内完成,因为在系统负载不高的情况下,将思考时间(思考时间的值等于交易响应时间)加到脚本中,并发用户数基本可以增加一倍,因此用并发用户数来衡量系统的性能没太大的意义。

 

 

 

6.  相关案例

 

通过大量性能测试我们发现不需要用上万的用户并发去进行测试,只要系统处理业务时间足够快,几百个用户甚至几十个用户就可以达到目的。另外咨询很多专家做过的性能测试项目,基本都没有超过5000用户并发。

 

因此对于大型系统、业务量非常高、硬件配置足够多的情况下,5000用户并发就足够了;对于中小型系统,1000用户并发就足够了。

 

 

 

7.  性能测试策略

 

做性能测试需要一套 标准化流程及测试策略,并发用户数只是指标考虑的一个,在做负载测试的时候,一般都是按照梯度施压的方式去加用户数,而不是在没有预估的情况下,一次加几 万个用户,,交易失败率非常高,响应时间非常长,已经超过了使用者忍受范围内,这样做没有多大的意义,这就好比“有多少钱可以干多少事”一样,需要选择相 关的策略。

 

8.  Loadrunner VS PTS

 

从下图对比项可以看出,PTSLoadrunner(LR)更能让客户接受。

 

方向

对比项

Loadrunner

PTS

备注

基础设施

被测系统软硬件环境需要额外购买?

需要

不需要

基础设施软硬件由阿里云提供,只需要购买服务

压力机环境需要额外购买?

需要

不需要

基础设施软硬件由PTS提供,只需要购买服务

费用

费用

非常贵

便宜,按需收费

商业化工具License非常贵

功能

功能

强大

较强大

LR很多功能基本上用不到,没必要大马拉小车

易用性

操作、学习等

困难

容易

LR不易上手

稳定性

系统稳定性

较稳定

非常稳定

LR压测过程中经常出现莫名其妙错误

场景模拟

场景模拟

条件

较真实

非常真实

PTS分布在全国各地的分布式集群可以真实模拟出现实场景,而LR不太容易模拟,即使可以的话,控制机和压力机通信经常掉线

 

 

 

9.  总结

 

Ø  系统的性能由TPS决定,跟并发用户数没有多大关系。在同样的TPS下,可以由不同的用户数去压(通过加思考时间设置)。

 

Ø  系统的最大TPS是一定的(在一个范围内),但并发用户数不一定,可以调整。

 

Ø  建议性能测试的时候,不要设置过长的思考时间,以最坏的情况下对服务器施压。

Ø  一般情况下,大型系统(业务量大、机器多)做压力测试,5000个用户并发就够了,中小型系统做压力测试,1000个用户并发就足够了。

这篇关于并发用户数与TPS之间的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494297

相关文章

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

Java并发编程之——BlockingQueue(队列)

一、什么是BlockingQueue BlockingQueue即阻塞队列,从阻塞这个词可以看出,在某些情况下对阻塞队列的访问可能会造成阻塞。被阻塞的情况主要有如下两种: 1. 当队列满了的时候进行入队列操作2. 当队列空了的时候进行出队列操作123 因此,当一个线程试图对一个已经满了的队列进行入队列操作时,它将会被阻塞,除非有另一个线程做了出队列操作;同样,当一个线程试图对一个空

linux中使用rust语言在不同进程之间通信

第一种:使用mmap映射相同文件 fn main() {let pid = std::process::id();println!(

java线程深度解析(五)——并发模型(生产者-消费者)

http://blog.csdn.net/Daybreak1209/article/details/51378055 三、生产者-消费者模式     在经典的多线程模式中,生产者-消费者为多线程间协作提供了良好的解决方案。基本原理是两类线程,即若干个生产者和若干个消费者,生产者负责提交用户请求任务(到内存缓冲区),消费者线程负责处理任务(从内存缓冲区中取任务进行处理),两类线程之

java线程深度解析(四)——并发模型(Master-Worker)

http://blog.csdn.net/daybreak1209/article/details/51372929 二、Master-worker ——分而治之      Master-worker常用的并行模式之一,核心思想是由两个进程协作工作,master负责接收和分配任务,worker负责处理任务,并把处理结果返回给Master进程,由Master进行汇总,返回给客

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理 秒杀系统是应对高并发、高压力下的典型业务场景,涉及到并发控制、库存管理、事务管理等多个关键技术点。本文将深入剖析秒杀商品业务中常见的几个核心问题,包括 AOP 事务管理、同步锁机制、乐观锁、CAS 操作,以及用户限购策略。通过这些技术的结合,确保秒杀系统在高并发场景下的稳定性和一致性。 1. AOP 代理对象与事务管理 在秒杀商品