本文主要是介绍Linux _pthread 线程的同步 浅见,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
线程的同步
问题
同一个进程内的各个线程,共享该进程内的全局变量
如果多个线程同时对某个全局变量进行访问时,就可能导致竞态。解决办法,对临界区使用信号量、或互斥量。
信号量和互斥量的选择。
对于同步和互斥,使用信号量或互斥量都可以实现。
使用时,选择更符合语义的手段:
如果要求最多只允许一个线程进入临界区,则使用互斥量
如果要求多个线程之间的执行顺序满足某个约束,则使用信号量信号量
1)什么是信号量
此时所指的“信号量”是指用于同一个进程内多个线程之间的信号量。
即POSIX信号量,而不是System V信号量(用于进程之间的同步)用于线程的信号量的原理,与用于进程之间的信号量的原理相同。都有P操作、V操作。信号量的表示:sem_t 类型
2) 信号量的初始化
sem_init
原型:int sem_init (sem_t *sem, int pshared, unsigned int value);
功能:对信号量进行初始化
参数:sem, 指向被初始化的信号量
pshared, 0:表示该信号量是该进程内使用的“局部信号量”, 不再被其他进程共享。
非0:该信号量可被其他进程共享,Linux不支持这种信号量
value, 信号量的初值。= 0
返回值:成功,返回0
失败, 返回错误码3) 信号量的P操作
sem_wait
原型:int sem_wait (sem_t *sem);
返回值:成功,返回0
失败, 返回错误码4) 信号量的V操作
sem_post
原型:int sem_post (sem_t *sem);
返回值:成功,返回0
失败, 返回错误码5) 信号量的删除
sem_destroy
原型:int sem_destroy (sem_t *sem);
返回值:成功,返回0
失败, 返回错误码6) 实例
主线程循环输入字符串,把字符串存放到一个全局缓存中。
新线程从全局缓存中读取字符串,统计该字符串的长度。
直到用户输入end
main1.c创建2个线程(共有主线程、线程1、线程2共3个线程) 主线程阻塞式等待用户输入字符串 主线程每接收到一个字符串之后, 线程1就马上对该字符串进行处理。 线程1的处理逻辑为:统计该字符串的个数,并记录当时的时间。 线程1把该字符串处理完后,线程2马上就把处理结果写入文件result.txt 直到用户输入exit. multi_pthread.c
互斥量
1)什么是互斥量
效果上等同于初值为1的信号量互斥量的使用:类型为 pthread_mutex_t
2)互斥量的初始化
pthread_mutex_init
原型:int pthread_mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);
参数:mutex, 指向被初始化的互斥量
attr, 指向互斥量的属性
一般取默认属性(当一个线程已获取互斥量后,该线程再次获取该信号量,将导致死锁!)3) 互斥量的获取
pthread_mutex_lock
原型:int pthread_mutex_lock (pthread_mutex_t *mutex);4)互斥量的释放
pthread_mutex_unlock
原型:int pthread_mutex_unlock (pthread_mutex_t *mutex);5)互斥量的删除
pthread_mutex_destroy
int pthread_mutex_destroy (pthread_mutex_t *mutex);6) 实例
最简单的互斥量使用
main2.cmain3.c (1) 分析程序的功能 (2) 分析程序存在的隐患 (3) 用互斥量解决该程序的隐患 (不能删除、修改代码,只能添加代码) 修改后为main4.c
void work(char *str)
{char *p = str;while(*p) {if (*p >= 'a' && *p <= 'z') {*p = *p - 'a' + 'A';}}}time_t time;
time(&time);
char *p = ctime(&time);
main1.c
#include <pthread.h>
#include <semaphore.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>#define BUFF_SIZE 80char buff[BUFF_SIZE];
sem_t sem;static void* str_thread_handle(void *arg)
{while(1) {//P(sem)if (sem_wait(&sem) != 0) {printf("sem_wait failed!\n");exit(1);}printf("string is: %slen=%d\n", buff, strlen(buff));if (strncmp(buff, "end", 3) == 0) {break;}}
}int main(void)
{int ret;pthread_t str_thread;void *thread_return;ret = sem_init(&sem, 0, 0);if (ret != 0) {printf("sem_init failed!\n");exit(1);}ret = pthread_create(&str_thread, 0, str_thread_handle, 0);if (ret != 0) {printf("pthread_create failed!\n");exit(1);}while (1) {fgets(buff, sizeof(buff), stdin);//V(sem)if (sem_post(&sem) != 0) {printf("sem_post failed!\n");exit(1);}if (strncmp(buff, "end", 3) == 0) {break;}}ret = pthread_join(str_thread, &thread_return);if (ret != 0) {printf("pthread_join failed!\n");exit(1);}ret = sem_destroy(&sem);if (ret != 0) {printf("sem_destroy failed!\n");exit(1);}return 0;
}
main2.c
#include <pthread.h>
#include <semaphore.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>#define BUFF_SIZE 80int global_value = 1000;
pthread_mutex_t lock;static void* str_thread_handle(void *arg)
{int i = 0;for (i=0; i<10; i++) {//pthread_mutex_lock(&lock);if (global_value > 0) {// worksleep(1);printf("soled ticket(%d) to ChildStation(%d)\n",global_value, i+1);}global_value--;//pthread_mutex_unlock(&lock);sleep(1);}
}int main(void)
{int ret;pthread_t str_thread;void *thread_return;int i;ret = pthread_mutex_init(&lock, 0);if (ret != 0) {printf("pthread_mutex_init failed!\n");exit(1);}ret = pthread_create(&str_thread, 0, str_thread_handle, 0);if (ret != 0) {printf("pthread_create failed!\n");exit(1);}for (i=0; i<10; i++) {//pthread_mutex_lock(&lock);if (global_value > 0) {// worksleep(1);printf("soled ticket(%d) to MainStation(%d)\n",global_value, i+1);}global_value--;//pthread_mutex_unlock(&lock);sleep(1);}ret = pthread_join(str_thread, &thread_return);if (ret != 0) {printf("pthread_join failed!\n");exit(1);}ret = pthread_mutex_destroy(&lock);if (ret != 0) {printf("pthread_mutex_destroy failed!\n");exit(1);}return 0;
}
main3.c
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>void *thread_function(void *arg);#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;int main()
{int res;pthread_t a_thread;void *thread_result;res = pthread_create(&a_thread, NULL, thread_function, NULL);if (res != 0) {perror("Thread creation failed");exit(EXIT_FAILURE);}printf("Input some text. Enter 'end' to finish\n");while(!time_to_exit) {fgets(work_area, WORK_SIZE, stdin);while(1) {if (work_area[0] != '\0') {sleep(1);}else {break;}}}printf("\nWaiting for thread to finish...\n");res = pthread_join(a_thread, &thread_result);if (res != 0) {perror("Thread join failed");exit(EXIT_FAILURE);}printf("Thread joined\n");exit(EXIT_SUCCESS);
}void *thread_function(void *arg)
{sleep(1);while(strncmp("end", work_area, 3) != 0) {printf("You input %d characters\n", strlen(work_area) -1);work_area[0] = '\0';sleep(1);while (work_area[0] == '\0' ) {sleep(1);}}time_to_exit = 1;work_area[0] = '\0';pthread_exit(0);
}
main4.c
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>void *thread_function(void *arg);
pthread_mutex_t work_mutex; /* protects both work_area and time_to_exit */#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;int main() {int res;pthread_t a_thread;void *thread_result;res = pthread_mutex_init(&work_mutex, NULL);if (res != 0) {perror("Mutex initialization failed");exit(EXIT_FAILURE);}res = pthread_create(&a_thread, NULL, thread_function, NULL);if (res != 0) {perror("Thread creation failed");exit(EXIT_FAILURE);}pthread_mutex_lock(&work_mutex);printf("Input some text. Enter 'end' to finish\n");while(!time_to_exit) {fgets(work_area, WORK_SIZE, stdin);pthread_mutex_unlock(&work_mutex);while(1) {pthread_mutex_lock(&work_mutex);if (work_area[0] != '\0') {pthread_mutex_unlock(&work_mutex);sleep(1);}else {break;}}}pthread_mutex_unlock(&work_mutex);printf("\nWaiting for thread to finish...\n");res = pthread_join(a_thread, &thread_result);if (res != 0) {perror("Thread join failed");exit(EXIT_FAILURE);}printf("Thread joined\n");pthread_mutex_destroy(&work_mutex);exit(EXIT_SUCCESS);
}void *thread_function(void *arg) {sleep(1);pthread_mutex_lock(&work_mutex);while(strncmp("end", work_area, 3) != 0) {printf("You input %d characters\n", strlen(work_area) -1);work_area[0] = '\0';pthread_mutex_unlock(&work_mutex);sleep(1);pthread_mutex_lock(&work_mutex);while (work_area[0] == '\0' ) {pthread_mutex_unlock(&work_mutex);sleep(1);pthread_mutex_lock(&work_mutex);}}time_to_exit = 1;work_area[0] = '\0';pthread_mutex_unlock(&work_mutex);pthread_exit(0);
}
这篇关于Linux _pthread 线程的同步 浅见的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!