LangChain学习二:提示-实战(上半部分)

2023-12-14 03:30

本文主要是介绍LangChain学习二:提示-实战(上半部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 上一节内容:LangChain学习一:模型-实战
  • 学习目标:提示词及提示词模板的运用
  • 学习内容一:什么是提示词?
  • 学习内容二:提示词模板
    • 2.1 入门
    • 2.2 模板格式
    • 2.3 验证模板
    • 2.4 序列化提示模板
    • 2.5 将少量示例传递给提示模板(few_shot)
    • 2.6 选择提示模板的示例
        • 2.6.1 基于长度的示例选择器
  • 学习内容三:聊天提示模板
    • 3.1 聊天提示模板
      • 3.1 .1 实战:首先需要声明和定义一个模板
      • 3.1 .2 实战:把提示词模板放入系统消息提示模板、人类消息提示模板等,并进行组合放入大模型
        • 3.1.2.1 提示词模板放入SystemMessagePromptTemplate、HumanMessagePromptTemplate、ChatPromptTemplate等
        • 3.1.2.2 不同类型的 MessagePromptTemplate
    • 3.2 实例选择器

上一节内容:LangChain学习一:模型-实战

LangChain学习一:模型-实战

学习目标:提示词及提示词模板的运用


学习内容一:什么是提示词?

大白话就是我们问大模型的问题

在这里插入图片描述

学习内容二:提示词模板

  提示模板是生成提示的可重复方法。
就是一个字符串,这个字符串里面包含{变量},我们要用的时候把变量进行赋值,赋值之后我们的模板就实例化成了一句话

提示模板可能包含:

对语言模型的指导,

一组少量示例,以帮助语言模型生成更好的响应,

对语言模型的提问。

2.1 入门

from langchain import PromptTemplatetemplate = """
给我介绍一下{product}?
"""prompt = PromptTemplate(input_variables=["product"],template=template,
)
out=prompt.format(product="华为")
print(out)

在这里插入图片描述
{product}这里声明了一个变量,也可以说是占位符(可以是多个),
然后PromptTemplate进行实例化input_variables代表变量的列表,这里的值一定要和我们声明的相同,template就是我们的定义模板是那句话

prompt.format就是通过变量名='实际值’进行实例化

还有一种方式是,先声明后赋值

from langchain import PromptTemplatetemplate = """
给我介绍一下{product}?
"""prompt_template = PromptTemplate.from_template(template)
out=prompt_template.format(product="华为")
print(out)

效果和上面一样
在这里插入图片描述

2.2 模板格式

以上2种情况是默认Python f-string处理的,比如说,下面这个例子,我们就想让字符串里面包含{ok}

from langchain import PromptTemplatetemplate = """
给我介绍一下{product}{ok}?
"""prompt = PromptTemplate(input_variables=["product"],template=template,
)
out=prompt.format(product="华为")
print(out)

在这里插入图片描述
这时候我们就可以通过 template_format 参数指定其他模板格式:
这里我们介绍一下 jinja2
在这里插入图片描述
需要加载依赖包

pip install jinja2
from langchain import PromptTemplate# Make sure jinja2 is installed before running thistemplate = "请给我介绍一下 {{ project }} {ok}"
prompt_template = PromptTemplate.from_template(template=template, template_format="jinja2")out=prompt_template.format(project="华为")
print(out)

在这里插入图片描述

这时候我们发现{ok}就可以显示了

2.3 验证模板

我们在实例化PromptTemplate的时候input_variables可以帮我们校验
template里面是否包含变量,如果不包含就会报错

prompt_template = PromptTemplate(template=template,input_variables=["project", "foo"]) 

在这里插入图片描述
我们可以通过validate_template=False来禁止此行为

template = "请给我介绍一下 {project}"
prompt_template = PromptTemplate(template=template,input_variables=["project", "foo"],validate_template=False) out=prompt_template.format(project="华为")

在这里插入图片描述
注意注意,这里out=prompt_template.format(project="华为")project一定要在template 里面存在,并且不能有其他的变量,不然都会报错

2.4 序列化提示模板

from langchain import PromptTemplatetemplate = "请给我介绍一下 {project}"
prompt_template = PromptTemplate.from_template(template=template)
# 保存
prompt_template.save("awesome_prompt.json") # Save to JSON file

在这里插入图片描述


from langchain.prompts import load_prompt
loaded_prompt = load_prompt("awesome_prompt.json")
out=loaded_prompt.format(project="华为")
print(out)

在这里插入图片描述

2.5 将少量示例传递给提示模板(few_shot)

from langchain import PromptTemplate, FewShotPromptTemplate# 首先,创建少数快照示例的列表。
examples = [{"word": "开心", "antonym": "悲伤"},{"word": "高", "antonym": "低"},
]#接下来,我们指定模板来格式化我们提供的示例。
#为此,我们使用“PromptTemplate”类。
example_formatter_template = """
单词: {word}
反义词: {antonym}\n
"""
example_prompt = PromptTemplate(input_variables=["word", "antonym"],template=example_formatter_template,
)# 最后,我们创建“FewShotPromptTemplate”对象。
few_shot_prompt = FewShotPromptTemplate(# 以下是我们要插入到提示中的示例。examples=examples,# 当我们将示例插入到提示中时,这就是我们想要格式化示例的方式。example_prompt=example_prompt,#前缀是位于提示中示例之前的一些文本。#通常,这包括入侵。prefix="给出每个输入的反义词",#后缀是在提示中的示例后面的一些文本。#通常,这是用户输入的位置suffix="单词: {input}\n反义词:",# 输入变量是整个提示所期望的变量.input_variables=["input"],#example_separator是用于将前缀、examples和后缀连接在一起的字符串。example_separator="",
)#我们现在可以使用“format”方法生成提示。
print(few_shot_prompt.format(input="big"))

结果

给出每个输入的反义词
单词: 开心
反义词: 悲伤单词: 高
反义词: 低单词: 大
反义词:

2.6 选择提示模板的示例

通俗点来说就是通过方法找到相似的示例,有以下几种方式

  • LengthBased ExampleSelector(基于长度的示例选择器):这是一种示例选择器,它根据示例的长度来选择要使用的示例。较长的示例可能包含更多的细节和信息,因此可以更全面地回答用户的问题。

  • 最大边际相关性 ExampleSelector:这种示例选择器基于与输入之间的边际相关性来选择示例。它计算每个示例与输入之间的相关性,并选择具有最高相关性的示例作为回答。

  • NGram 重叠 ExampleSelector:NGram 重叠示例选择器根据输入和示例之间的共享 N-gram 片段来选择示例。它通过匹配输入和示例之间的共同 N-gram 片段来确定最相关的示例。

  • 相似度 ExampleSelector:相似度示例选择器使用文本相似度度量来选择最相关的示例。它计算输入和示例之间的相似度,然后选择与输入最相似的示例作为回答。

这里举个例子介绍下,后面单独出一节来介绍

2.6.1 基于长度的示例选择器

总长度是由max_length控制的,如果我们输入的长一些,就会少从examples 拿一些,输入短,则反之

from langchain import PromptTemplate, FewShotPromptTemplate# 首先,创建少数快照示例的列表。
from langchain.prompts import LengthBasedExampleSelectorexamples = [{"word": "开心", "antonym": "悲伤"},{"word": "高", "antonym": "低"},
]# 接下来,我们指定模板来格式化我们提供的示例。
# 为此,我们使用“PromptTemplate”类。
example_formatter_template = """
单词: {word}
反义词: {antonym}\n
"""
example_prompt = PromptTemplate(input_variables=["word", "antonym"],template=example_formatter_template,
)
#我们将使用' LengthBasedExampleSelector '来选择示例。
example_selector = LengthBasedExampleSelector(# 这些是可供选择的例子。examples=examples,#这是用于格式化示例的PromptTemplate。example_prompt=example_prompt,# 这是格式化示例的最大长度。# 长度由下面的get_text_length函数测量。max_length=25,
)
# 我们现在可以使用' example_selector '来创建' FewShotPromptTemplate '。
dynamic_prompt = FewShotPromptTemplate(# We provide an ExampleSelector instead of examples.example_selector=example_selector,example_prompt=example_prompt,prefix="给出每个输入的反义词",suffix="单词: {input}\n反义词:",input_variables=["input"],example_separator="",
)# We can now generate a prompt using the `format` method.
print(dynamic_prompt.format(input="big"))

学习内容三:聊天提示模板

本次介绍一下几个

  • 聊天提示模板
  • LLM提示模板
  • 示例选择器
  • 输出解析器

3.1 聊天提示模板

  上一节介绍了,模型有聊天模型,也是我们常用的。这一节,我们看一下如何更好地使用聊天模型。聊天模型和LLM模型在上一节也说过了,是有不同的,聊天模型的每条信息
都与一个角色 进行关联

  因此,LangChain提供了几个相关的提示模板,以便轻松构建和处理提示。在查询聊天模型时,建议您使用这些与聊天相关的提示模板,而不是PromptTemplate,以充分发挥基础聊天模型的潜力。

"""
@FileName:chat_prompt.py
@Description:
@Author:lucky 
@Time:2023/12/9 10:41
"""
from langchain.prompts import (ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)template = "你是一个很有帮助的翻译助手{input_language} 翻译成 {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
print(system_message_prompt)
human_template = "{text}"
print("====================")
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
print(human_message_prompt)

在这里插入图片描述
简单介绍一下

  • ChatPromptTemplate (聊天模板):
      这个模板用于生成对话的开头,它通常包含一些问候语或提醒用户如何使用机器人的信息。

  • PromptTemplate (提示模板):
      这个模板用于为用户提供特定主题或任务的提示。它可以是一个问题,要求用户提供更多信息,或者是一个指导性的陈述,告诉用户下一步该做什么

  • SystemMessagePromptTemplate(系统消息提示模板):
      这个模板用于生成系统消息,向用户提供一些重要的信息,比如机器人无法回答某个问题、请求用户提供更多细节等等。

  • AIMessagePromptTemplate (AI消息提示模板):
      这个模板用于生成 AI 机器人的回答。它基于预训练的模型,使用大量的数据和算法来生成针对用户问题的响应。

  • HumanMessagePromptTemplate(人类消息提示模板):
      这个模板用于生成人类操作者的回答,当机器人无法回答某个问题时,会将问题转交给人类操作者进行回答。

其中{}里面是变量名称,所以不要用{}在你的提示词中,如果用,那就不要用LangChain提示词模板。

3.1 .1 实战:首先需要声明和定义一个模板

from langchain.callbacks import StreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.prompts import (ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.prompts.chat import ChatPromptValue
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)

声明一个模板,注意:{变量} 提示词模板的意思就是一个框架里面有一些变量,这些变量也可以理解成为占位符。后面使用提示词模板只要把里面的变量进行具体化就可以了

template = "你是一个很有帮助的翻译助手{input_language} 翻译成 {output_language}."

3.1 .2 实战:把提示词模板放入系统消息提示模板、人类消息提示模板等,并进行组合放入大模型

SystemMessagePromptTemplate、HumanMessagePromptTemplate等都有一个from_template方法,用于把我们提示词模板放入

3.1.2.1 提示词模板放入SystemMessagePromptTemplate、HumanMessagePromptTemplate、ChatPromptTemplate等
from langchain.callbacks import StreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.prompts import (ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.prompts.chat import ChatPromptValue
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)
template = "你是一个很有帮助的翻译助手{input_language} 翻译成 {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
print(f"========system_message_prompt的格式化结果:{system_message_prompt}============\n\n\n")
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
print(f"========human_template的格式化结果:{human_template}============\n\n\n")

在这里插入图片描述
这时候我们可以构建一个ChatPromptTemplate(聊天模板),把我们的(系统消息提示模板)和(人类消息提示模板)组合起来,放入大模型。

组合方式:ChatPromptTemplate提供了from_messages方法

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])print(f"========chat_prompt的格式化结果:{chat_prompt}============3\n\n\n")

组合之后我们可以看一下chat_prompt 这个对象里面有什么,
input_variables:包含了所有的变量
messages:是个列表:包含了所有的模板对象
在这里插入图片描述

我们可以format_prompt实例化(就是把模板里面的变量进行赋值),然后通过to_messages打印他的实例结构结果

output_to_messages=chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages()
print(output_to_messages)

在这里插入图片描述
或者你也可以直接使用format,与上面不同的是,format直接返回的是值,或者你也可以用上面的方式使用to_string方法,都是可行的

output = chat_prompt.format(input_language="English", output_language="French", text="I love programming.")
print(f"========format的结果:{output}============4\n\n\n")# or alternatively
output_2 = chat_prompt.format_prompt(input_language="English", output_language="French",text="I love programming.").to_string()

在这里插入图片描述
总结一下:以上把我们的(系统消息提示模板)和(人类消息提示模板)组合起来,放入ChatPromptTemplate(聊天模板)一共用了三个步骤:

  1. 分别实例化了 系统消息提示模板 和 人类消息提示模板
  2. 声明ChatPromptTemplate对象的同时把相关模板实例也放进去
  3. 对ChatPromptTemplate对象模板进行使用,把变量名换成我们想要的

其上以上三个步骤可以作为一个步骤直接使用,也就是不使用模板的方式,我们观察一下,上面的多有工作都是为了节省一些重复的工作,但是送进大模型的就是具体的话,所以直接用下面的方式

output_3=ChatPromptValue(messages=[SystemMessage(content='你是把英语翻译成法语的得力助手。', additional_kwargs={}),HumanMessage(content='I love programming.', additional_kwargs={})])
print(f"========format_prompt的结果:{output_3}===========5\n\n\n")

在这里插入图片描述
把他送入我们的模型,就可以轻易的获得我们想要的结果了

chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()],verbose=True,# callbacks=[callback],openai_api_key="none",openai_api_base="http://127.0.0.1:8000/v1",model_name="Qwen-7B-Chat"
)
resp = chat(output_3.messages)
print(f"=======模型返回结果:\n{resp}\n\n")

在这里插入图片描述

3.1.2.2 不同类型的 MessagePromptTemplate

LangChain 提供了不同类型的 MessagePromptTemplate。其中最常用的是 AIMessagePromptTemplate、SystemMessagePromptTemplate 和 HumanMessagePromptTemplate,分别用于创建 AI 消息、系统消息和人类消息。

同样自定义也有两种方式

  • 使用模板
  • 直接实例化

使用模板

chat_message_prompt = ChatMessagePromptTemplate.from_template(role="Jedi", template=prompt)
chat_message_out=chat_message_prompt.format(subject="force")
print(f"========chat_message_prompt的格式化结果:{chat_message_out}============7\n\n\n")

直接实例化

out=ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi')
print(f"========chat_message_prompt的格式化结果:{out}============8\n\n\n")

在这里插入图片描述
效果是一样的

至于这个做啥的,这个就是看你自己的场景了。

LangChain 还提供了 MessagesPlaceholder,该占位符可以在格式化期间完全控制要呈现的消息。当您不确定应该使用哪个消息提示模板的角色或者希望在格式化期间插入消息列表时,这可能非常有用。

就是再上一个小节里面,我们把不同的提示模板进行组合,但是前提条件都是我们知道有几个,占位符就是让我们在前提不知道几个的情况下进行的

from langchain.prompts import MessagesPlaceholderhuman_prompt = "总结一下我们到目前为止的谈话 {word_count}单词."
human_message_template = HumanMessagePromptTemplate.from_template(human_prompt)chat_prompt = ChatPromptTemplate.from_messages([MessagesPlaceholder(variable_name="conversation"), human_message_template])

这里就是使用了conversation占位符。下面我们就可再次组合

human_message = HumanMessage(content="What is the best way to learn programming?")
ai_message = AIMessage(content="""\
1. Choose a programming language: Decide on a programming language that you want to learn. 2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.3. Practice, practice, practice: The best way to learn programming is through hands-on experience\
""")out=chat_prompt.format_prompt(conversation=[human_message, ai_message], word_count="10").to_messages()
print(out)
[HumanMessage(content='What is the best way to learn programming?', additional_kwargs={}),AIMessage(content='1. Choose a programming language: Decide on a programming language that you want to learn.   2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.  3. Practice, practice, practice: The best way to learn programming is through hands-on experience', additional_kwargs={}),HumanMessage(content='Summarize our conversation so far in 10 words.', additional_kwargs={})]

3.2 实例选择器

说白了就是选择一些例子,给大模型。让大模型参考给出答案

下面介绍一些常用的

  • LengthBased ExampleSelector(基于长度的示例选择器):这是一种示例选择器,它根据示例的长度来选择要使用的示例。较长的示例可能包含更多的细节和信息,因此可以更全面地回答用户的问题。

  • 最大边际相关性 ExampleSelector:这种示例选择器基于与输入之间的边际相关性来选择示例。它计算每个示例与输入之间的相关性,并选择具有最高相关性的示例作为回答。

  • NGram 重叠 ExampleSelector:NGram 重叠示例选择器根据输入和示例之间的共享 N-gram 片段来选择示例。它通过匹配输入和示例之间的共同 N-gram 片段来确定最相关的示例。

  • 相似度 ExampleSelector:相似度示例选择器使用文本相似度度量来选择最相关的示例。它计算输入和示例之间的相似度,然后选择与输入最相似的示例作为回答。

这篇关于LangChain学习二:提示-实战(上半部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490979

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学