使用SQLAlchemy将Pandas DataFrames导出到SQLite

2023-12-13 23:18

本文主要是介绍使用SQLAlchemy将Pandas DataFrames导出到SQLite,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述

在进行探索性数据分析时 (例如,在使用pandas检查COVID-19数据时),通常会将CSV,XML或JSON等文件加载到 pandas DataFrame中。然后,您可能需要对DataFrame中的数据进行一些处理,并希望将其存储在关系数据库等更持久的位置。

本教程介绍了如何从CSV文件加载pandas DataFrame,如何从完整数据集中提取一些数据,然后使用SQLAlchemy将数据子集保存到SQLite数据库 。

二、配置开发环境

确保已安装Python 3。截至目前, Python 3.8.2是Python的最新版本。

在本教程中,我们还将使用:

  • pandas(项目主页 和源代码),本教程中的版本1.1.5
  • SQLAlchemy (项目主页和 源代码),本教程的1.3.20
  • SQLite(项目首页 和源代码),Python 包含一个连接器,作为Python标准库的一部分

使用以下命令将上述代码库安装到新的 Python虚拟环境中:

pip3 install pandas sqlalchemy

现在,我们的开发环境已准备好下载示例COVID-19数据集,将其加载到pandas DataFrame中,对其进行一些分析,然后保存到SQLite数据库中。

三、获取COVID-19数据

在您的网络浏览器中, 下载关于当今全球COVID-19病例地理分布页面的数据下载。它看起来应类似于以下屏幕截图。

 应该有一个以CSV格式下载数据的链接,但是该组织在过去几周内多次更改了页面布局,这使得很难找到Excel(XLSX)以外的格式。如果您在获取CSV版本时遇到问题,只需从GitHub下载此版本即可,该版本 与2020年12月10日下载的副本挂钩。

四、将CSV导入pandas

原始数据位于CSV文件中,我们需要通过pandas DataFrame将其加载到内存中。

REPL准备执行代码,但是我们首先需要导入pandas库,以便可以使用它。

from pandas import read_csvdf = read_csv("data.csv", encoding="ISO-8859-1")

现在将数据加载到df作为pandas DataFrame 类实例的变量中 。

count在此DataFrame上运行该函数时,我们会发现它具有61048行。

from pandas import read_csvdf = read_csv("data.csv", encoding="ISO-8859-1")
print(df.count())

执行输出:

dateRep                                                       61048
day                                                           61048
month                                                         61048
year                                                          61048
cases                                                         61048
deaths                                                        61048
countriesAndTerritories                                       61048
geoId                                                         60777
countryterritoryCode                                          60929
popData2019                                                   60929
continentExp                                                  61048
Cumulative_number_for_14_days_of_COVID-19_cases_per_100000    58173
dtype: int64

接下来,我们将采用这组61048行数据,并仅切出与美国有关的行。

从原始数据帧创建新的数据帧

我们可以使用pandas函数将单个国家/地区的所有数据行匹配countriesAndTerritories到与所选国家/地区匹配的列。

from pandas import read_csvdf = read_csv("data.csv", encoding="ISO-8859-1")
# print(df.count())save_df = df[df['countriesAndTerritories']=="United_States_of_America"]
print(save_df)

save_df变量包含数据的较小的子集。您可以通过自己打印来找出其中的内容:

您应该看到类似以下输出的内容:

          dateRep  ...  Cumulative_number_for_14_days_of_COVID-19_cases_per_100000
58197  10/12/2020  ...                                         794.356027         
58198  09/12/2020  ...                                         784.195114         
58199  08/12/2020  ...                                         769.896719         
58200  07/12/2020  ...                                         762.794473         
58201  06/12/2020  ...                                         757.944062         
...           ...  ...                                                ...         
58538  04/01/2020  ...                                                NaN         
58539  03/01/2020  ...                                                NaN         
58540  02/01/2020  ...                                                NaN         
58541  01/01/2020  ...                                                NaN         
58542  31/12/2019  ...                                                NaN         [346 rows x 12 columns]

原始61048行中有346行数据。让我们继续将此子集保存到SQLite关系数据库中。

将DataFrame保存到SQLite

我们将使用SQLAlchemy创建与新SQLite数据库的连接,在此示例中,该数据库将存储在名为的文件中save_pandas.db。当然,您可以使用所需的任何名称在任何位置保存文件,而不仅是在执行Python REPL的目录中保存。

首先create_enginesqlalchemy 库中导入函数。

使用导入的create_engine函数创建连接,然后connect在其上调用方法。

from pandas import read_csvdf = read_csv("data.csv", encoding="ISO-8859-1")
# print(df.count())save_df = df[df['countriesAndTerritories']=="United_States_of_America"]
# print(save_df)from sqlalchemy import create_engine
engine = create_engine('sqlite:///save_pandas.db', echo=True)
sqlite_connection = engine.connect()

我们设置echo=True为查看来自数据库连接的所有输出。连接成功后,您将看到类似于以下的输出:

2020-12-11 16:30:21,542 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2020-12-11 16:30:21,543 INFO sqlalchemy.engine.base.Engine ()
2020-12-11 16:30:21,544 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2020-12-11 16:30:21,545 INFO sqlalchemy.engine.base.Engine ()

使用您要创建的表名的字符串设置变量名。然后to_sql 在save_df对象上调用该方法时使用该变量,这是我们的pandas DataFrame,它是原始数据集的子集,从原始7320中筛选出89行。

请注意,在这种情况下,如果表已经存在于数据库中,我们将失败。您可以在该程序的更强大的版本中更改if_existsreplace 或append添加自己的异常处理。查看 pandas.DataFrame.to_sql 文档,以获取有关您的选项的详细信息。

# !/usr/bin/python3
# -*- coding: utf-8 -*-
from pandas import read_csvdf = read_csv("data.csv", encoding="ISO-8859-1")
# print(df.count())save_df = df[df['countriesAndTerritories']=="United_States_of_America"]
# print(save_df)from sqlalchemy import create_engine
engine = create_engine('sqlite:///save_pandas.db', echo=True)
sqlite_connection = engine.connect()sqlite_table = "Covid19"
save_df.to_sql(sqlite_table, sqlite_connection, if_exists='fail')
sqlite_connection.close()

执行输出:

2020-12-11 16:31:11,484 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2020-12-11 16:31:11,484 INFO sqlalchemy.engine.base.Engine ()
2020-12-11 16:31:11,485 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2020-12-11 16:31:11,485 INFO sqlalchemy.engine.base.Engine ()
2020-12-11 16:31:11,489 INFO sqlalchemy.engine.base.Engine PRAGMA main.table_info("Covid19")
2020-12-11 16:31:11,489 INFO sqlalchemy.engine.base.Engine ()
2020-12-11 16:31:11,490 INFO sqlalchemy.engine.base.Engine PRAGMA temp.table_info("Covid19")
2020-12-11 16:31:11,490 INFO sqlalchemy.engine.base.Engine ()
2020-12-11 16:31:11,492 INFO sqlalchemy.engine.base.Engine 
CREATE TABLE "Covid19" ("index" BIGINT, "dateRep" TEXT, day BIGINT, month BIGINT, year BIGINT, cases BIGINT, deaths BIGINT, "countriesAndTerritories" TEXT, "geoId" TEXT, "countryterritoryCode" TEXT, "popData2019" FLOAT, "continentExp" TEXT, "Cumulative_number_for_14_days_of_COVID-19_cases_per_100000" FLOAT
)2020-12-11 16:31:11,492 INFO sqlalchemy.engine.base.Engine ()
2020-12-11 16:31:11,506 INFO sqlalchemy.engine.base.Engine COMMIT
2020-12-11 16:31:11,507 INFO sqlalchemy.engine.base.Engine CREATE INDEX "ix_Covid19_index" ON "Covid19" ("index")
2020-12-11 16:31:11,507 INFO sqlalchemy.engine.base.Engine ()
2020-12-11 16:31:11,516 INFO sqlalchemy.engine.base.Engine COMMIT
2020-12-11 16:31:11,519 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2020-12-11 16:31:11,524 INFO sqlalchemy.engine.base.Engine INSERT INTO "Covid19" ("index", "dateRep", day, month, year, cases, deaths, "countriesAndTerritories", "geoId", "countryterritoryCode", "popData2019", "continentExp", "Cumulative_number_for_14_days_of_COVID-19_cases_per_100000") VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
2020-12-11 16:31:11,525 INFO sqlalchemy.engine.base.Engine ((58197, '10/12/2020', 10, 12, 2020, 220025, 3124, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 794.35602672), (58198, '09/12/2020', 9, 12, 2020, 217344, 2564, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 784.1951137), (58199, '08/12/2020', 8, 12, 2020, 197334, 1433, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 769.89671919), (58200, '07/12/2020', 7, 12, 2020, 173432, 1111, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 762.79447316), (58201, '06/12/2020', 6, 12, 2020, 211933, 2203, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 757.94406245), (58202, '05/12/2020', 5, 12, 2020, 231930, 2680, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 746.87056354), (58203, '04/12/2020', 4, 12, 2020, 214747, 2481, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 735.98730065), (58204, '03/12/2020', 3, 12, 2020, 203311, 3190, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', 727.86519506)  ... displaying 10 of 346 total bound parameter sets ...  (58541, '01/01/2020', 1, 1, 2020, 0, 0, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', None), (58542, '31/12/2019', 31, 12, 2019, 0, 0, 'United_States_of_America', 'US', 'USA', 329064917.0, 'America', None))
2020-12-11 16:31:11,527 INFO sqlalchemy.engine.base.Engine COMMIT
2020-12-11 16:31:11,535 INFO sqlalchemy.engine.base.Engine SELECT name FROM sqlite_master WHERE type='table' ORDER BY name
2020-12-11 16:31:11,535 INFO sqlalchemy.engine.base.Engine ()
View Code

我们可以通过sqlite3命令行查看器查看数据,以确保将其正确保存到SQLite文件中。

通过Navicat软件,打开save_pandas.db文件名的命令来访问数据库。然后,使用标准的SQL查询从Covid19表中获取所有记录。

打开表Covid19,执行sql语句

select * from Covid19;

效果如下:

 

 countriesAndTerritories列匹配的 所有数据United_States_of_America都在那里!我们已成功将数据从DataFrame导出到SQLite数据库文件中。

下一步是什么?

我们只是将数据从CSV导入到pandas DataFrame中,选择了该数据的一个子集,然后将其保存到关系数据库中。

您应该看一下“ 通过研究COVID-19数据学习熊猫” 教程,以了解有关如何从较大的DataFrame中选择数据子集的更多信息,或者访问pandas页面,以获取Python社区其他成员提供的更多教程。

您还可以通过阅读Full Stack Python目录表来了解Python项目中下一步的代码 。

本文参考链接:

https://www.fullstackpython.com/blog/export-pandas-dataframes-sqlite-sqlalchemy.html

这篇关于使用SQLAlchemy将Pandas DataFrames导出到SQLite的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490309

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud