POJ 2524 Ubiquitous Religions(中文对应)

2023-12-13 20:32

本文主要是介绍POJ 2524 Ubiquitous Religions(中文对应),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ubiquitous Religions(宗教信仰)
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 30250 Accepted: 14639

Description

There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in. 

You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

Input

The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

Output

For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

Sample Input

10 9
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
10 4
2 3
4 5
4 8
5 8
0 0

Sample Output

Case 1: 1
Case 2: 7

Hint

Huge input, scanf is recommended.

Source

Alberta Collegiate Programming Contest 2003.10.18

中文版:
当今世界有很多不同的宗教,很难通晓他们。你有兴趣找出在你的大学里有多少种不同的宗教信仰。
你知道在你的大学里有n个学生(0 < n <= 50000) 。你无法询问每个学生的宗教信仰。此外,许多学生不想说出他们的信仰。避免这些问题的一个方法是问m(0 <= m <= n(n - 1)/ 2)对学生, 问他们是否信仰相同的宗教( 例如他们可能知道他们两个是否去了相同的教堂) 。在这个数据中,你可能不知道每个人信仰的宗教,但你可以知道校园里最多可能有多少个不同的宗教。假定每个学生最多信仰一个宗教。

Input

有多组数据。对于每组数据:
第一行:两个整数n和m。
以下m行:每行包含两个整数i和j,表示学生i和j信仰相同的宗教。学生编号从1到n。
输入的最后一行中,n = m = 0。

Output

对于每组测试数据,输出一行,输出数据序号( 从1开始) 和大学里不同宗教的最大数量。(参见样例)


简单的并查集问题,就是预习预习吧 睡觉


代码:
#include<stdio.h>
#define MYDD 1103int pre[MYDD*50];//记录父节点
void init(int x) { //初始化for(int j=1; j<=x; j++) {pre[j]=j;//父节点等于本身}
}int find(int x) { //查找父节点return pre[x]==x? x:find(pre[x]);
}void combine(int x,int y) {//合并节点int fx=find(x);int fy=find(y);if(fx!=fy)pre[fx]=fy;
}int main() {int n,m,v=1;while(scanf("%d%d",&n,&m)&&(n||m)) {init(n);//初始化int a,b;for(int j=1; j<=m; j++) {scanf("%d%d",&a,&b);combine(a,b);}int ans=0;for(int j=1; j<=n; j++) {if(pre[j]==j)ans++;//父节点等于本身}printf("Case %d: %d\n",v++,ans);}return 0;
}




这篇关于POJ 2524 Ubiquitous Religions(中文对应)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489865

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一