【机器学习】MNIST数据集上的python读取和使用操作

2023-12-13 16:18

本文主要是介绍【机器学习】MNIST数据集上的python读取和使用操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MNIST手写字符数据集由LeCun大神提出。该数据集在机器学习中就相当于程序中的“Hello World”的存在。由于这个数据集可以很好测试我们的一些分类算法,本博客将对该数据集的读取操作等进行解释

MNIST官网: http://yann.lecun.com/exdb/mnist/

MNIST数据集主要由下面四个ubyte文件组成:
这里写图片描述
其中train_images_idx3_ubyte.gz和train_labels_idx1_ubyte.gz 两个文件分别为训练集及其标签,含60k张训练图像和标签。
t10k-images_idx3_ubyte.gz和t10_labels_idx1_ubyte.gz则分别表示为测试集图像,含10k张测试图像和标签

读取操作

先来看下idx3_ubyte文件和idx1_ubyte文件的构成:

idx3_ubyte(以训练集为例)
这里写图片描述
可以看到该文件前4个字节为magic number, number of image, number of rows, number of columns
因此在读取图片时,注意将其跳过。读取时,我们对一个图像一个图像进行,所以要设定一个偏移量offset

代码如下:

def decode_idx3_ubyte(idx3_ubyte_file, saveFlag, status):'''idx3_ubyte_file: source filesaveFlag: bool var (save image or not)status: Train or test (like 'test/') '''with open(idx3_ubyte_file, 'rb') as f:buf = f.read()offset = 0magic, imageNum, rows, cols = struct.unpack_from('>IIII', buf, offset)offset += struct.calcsize('>IIII')images = np.empty((imageNum,rows, cols))image_size = rows * colsfmt = '>' + str(image_size) + 'B'for i in range(imageNum):images[i] = np.array(struct.unpack_from(fmt, buf, offset)).reshape((rows,cols))if saveFlag == True:#保存图像im = Image.fromarray(np.uint8(images[i]))im.save(status + str(i) + '.png')offset += struct.calcsize(fmt)return images

idx1_ubyte(以训练集为例)
其组成结构:
这里写图片描述

同样,文件头含magic numbe 和 number of items两个综述性标志,读取时记得跳过:

def decode_idx1_ubyte(idx1_ubyte_file):# idx3_ubyte_file: source filewith open(idx1_ubyte_file, 'rb') as f:buf = f.read()offset = 0magic, LabelNum = struct.unpack_from('>II', buf, offset)offset += struct.calcsize('>II')Labels = np.zeros((LabelNum))for i in range(LabelNum):Labels[i] = np.array(struct.unpack_from('>B', buf, offset))offset += struct.calcsize('>B')return Labels

由于我们对数据集进行处理时候,经常要对图片进行向量化操作,这里顺便也把代码贴上来:

def MNIST2vector(idx3_ubyte_file):Im = decode_idx3_ubyte(idx3_ubyte_file, None, None)length,row,col = Im.shapereturn Im.reshape((length, row*col))

这样MNIST文件就转成了我们熟悉的格式,便很容易进行对我们的分类算法进行验证。

本文主要参考了http://www.jianshu.com/p/84f72791806f

这篇关于【机器学习】MNIST数据集上的python读取和使用操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489107

相关文章

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin