【机器学习】MNIST数据集上的python读取和使用操作

2023-12-13 16:18

本文主要是介绍【机器学习】MNIST数据集上的python读取和使用操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MNIST手写字符数据集由LeCun大神提出。该数据集在机器学习中就相当于程序中的“Hello World”的存在。由于这个数据集可以很好测试我们的一些分类算法,本博客将对该数据集的读取操作等进行解释

MNIST官网: http://yann.lecun.com/exdb/mnist/

MNIST数据集主要由下面四个ubyte文件组成:
这里写图片描述
其中train_images_idx3_ubyte.gz和train_labels_idx1_ubyte.gz 两个文件分别为训练集及其标签,含60k张训练图像和标签。
t10k-images_idx3_ubyte.gz和t10_labels_idx1_ubyte.gz则分别表示为测试集图像,含10k张测试图像和标签

读取操作

先来看下idx3_ubyte文件和idx1_ubyte文件的构成:

idx3_ubyte(以训练集为例)
这里写图片描述
可以看到该文件前4个字节为magic number, number of image, number of rows, number of columns
因此在读取图片时,注意将其跳过。读取时,我们对一个图像一个图像进行,所以要设定一个偏移量offset

代码如下:

def decode_idx3_ubyte(idx3_ubyte_file, saveFlag, status):'''idx3_ubyte_file: source filesaveFlag: bool var (save image or not)status: Train or test (like 'test/') '''with open(idx3_ubyte_file, 'rb') as f:buf = f.read()offset = 0magic, imageNum, rows, cols = struct.unpack_from('>IIII', buf, offset)offset += struct.calcsize('>IIII')images = np.empty((imageNum,rows, cols))image_size = rows * colsfmt = '>' + str(image_size) + 'B'for i in range(imageNum):images[i] = np.array(struct.unpack_from(fmt, buf, offset)).reshape((rows,cols))if saveFlag == True:#保存图像im = Image.fromarray(np.uint8(images[i]))im.save(status + str(i) + '.png')offset += struct.calcsize(fmt)return images

idx1_ubyte(以训练集为例)
其组成结构:
这里写图片描述

同样,文件头含magic numbe 和 number of items两个综述性标志,读取时记得跳过:

def decode_idx1_ubyte(idx1_ubyte_file):# idx3_ubyte_file: source filewith open(idx1_ubyte_file, 'rb') as f:buf = f.read()offset = 0magic, LabelNum = struct.unpack_from('>II', buf, offset)offset += struct.calcsize('>II')Labels = np.zeros((LabelNum))for i in range(LabelNum):Labels[i] = np.array(struct.unpack_from('>B', buf, offset))offset += struct.calcsize('>B')return Labels

由于我们对数据集进行处理时候,经常要对图片进行向量化操作,这里顺便也把代码贴上来:

def MNIST2vector(idx3_ubyte_file):Im = decode_idx3_ubyte(idx3_ubyte_file, None, None)length,row,col = Im.shapereturn Im.reshape((length, row*col))

这样MNIST文件就转成了我们熟悉的格式,便很容易进行对我们的分类算法进行验证。

本文主要参考了http://www.jianshu.com/p/84f72791806f

这篇关于【机器学习】MNIST数据集上的python读取和使用操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489107

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四