软考架构案例之大数据架构

2023-12-13 15:36

本文主要是介绍软考架构案例之大数据架构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 前言
    • 大数据架构特点
    • Lambda架构
    • Kappa架构
    • Lambda架构与Kappa架构对比
    • 写在最后

前言

前不久参加了11月份的软考系统架构师,下午案例中还是有很多的架构相关的知识点,比如大数据架构和动静分离架构图等等。其中大数据架构的题目是填空Lambda和Kappa架构的架构图各个层次的组成部分,还有一个大数据架构的特点以及两种架构对比的维度,这个题目是案例第一题必选,分值25分。那么,今天就来解答一下这个题目并以大数据架构为主题分享一下官方软考大纲中的大数据架构。

大数据架构特点

1、鲁棒性和容错性
对于大规模分布式系统中,机器可能存在宕机,但系统需要健壮性,行为正确,即使遇到了机器错误。机器错误和人错误都是存在的,每天都难以避免。
2、低延迟读取和更新能力
有的需要毫秒的更新能力,有的允许几个小时的延迟更新,只要有低延迟需求,系统应该保证鲁棒性。
3、横向扩展
当负载增大的时候,通常可以通过增加机器数量来横向扩展。
4、通用性
要支持绝大多数应用程序,包括金融领域,社交领域和电子商务。
5、延展性
有新的需求出现时候,可以把新的功能加入到系统。
6、查询能力
用户可以按照自己的需求进行查询,可以产生更高的价值。
7、最少维护能力
系统在大多数时候保持平衡,减少系统的维护次数重要途径。
8、可调式性
系统在运行中,产生的每一个值,都是可追踪调试的。

Lambda架构

Lambda架构设计目的在于提供一个能满足大数据系统关键特性的架构,包括高容错、低延迟、可扩展等。其整合离线计算与实时计算,融合不可变性、读写分离和复杂性隔离等原则。

Lambda 是用于同时处理离线和实时数据的,可容错的,可扩展的分布式系统。它具备强鲁棒性,提供低延迟和持续更新。Lambda架构应用场景: 机器学习、物联网、流处理。
在这里插入图片描述

如图所示,Lambda 架构可分解为三层,即批处理层、加速层和服务层。

一般情况下批处理层采用Hadoop技术栈,加速层采用Spark技术栈,服务层则是由HBase进行数据存储,并由Hive创建可查询视图。
在这里插入图片描述

Kappa架构

Kappa架构在Lambda的基础上进行了优化,删除了Batch Laver 的架构,将数据道以消息队列进行替代。因此对于Kappa架构来说,依旧以流处理为主,但是数据却在数据湖层面进行了存储,当需要进行离线分析或者再次计算的时候,则将数据湖的数据再次经过消息队列重播一次则可。
在这里插入图片描述

如图所示,输入数据直接由实时层的实时数据处理引擎对源源不断的源数据进行处理,再由服务层的服务后端进一步处理以提供上层的业务查询。而中间结果的数据都是需要存储的,这些数据包括历史数据与结果数据,统一存储在存储介质中。

在实际的开发场景中Kappa架构的实时层采用Fink技术栈,服务层当然还是HBase,另外有Hive创建查询视图。

Lambda架构与Kappa架构对比

根据两种架构对比分析

对比内容Lambda 架构Kappa 架构
复杂度与开发、维护成本需要维护两套系统(引擎),批处理层采用Hadoop,加速层采用Spark,复杂度高,开发、维护成本高只需要维护一套系统(引擎),实时层采用Flink,复杂度低,开发、维护成本低
计算开销需要一直运行批处理和伪实时计算,计算开销大必要时进行全量计算,计算开销相对较小
实时性满足实时性,属于伪实时,在加速层采用Spark只是粒度细了一些满足实时性
满足实时性批式全量处理,吞吐量大,历史数据处理能力强流式全量处理,吞吐量相对较低,历史数据处理能力相对较弱

写在最后

软考大纲的大数据架构分为Lambda、Kappa两种架构,Lambda架构采用Hadoop、Spark实现批量处理数据,而Kappa架构则是采用Flink流式处理实现实时数据处理。在我们实际的开发实战场景中一般还是偏实时数据处理较多,比如广告平台、证券交易等等。

下一篇博客我们继续介绍软考架构案例之Redis一致性如何保证,敬请期待。

这篇关于软考架构案例之大数据架构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488987

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核