Looper,Handler,MessageQueue的分析

2023-12-13 12:18

本文主要是介绍Looper,Handler,MessageQueue的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

Android消息机制解析

在这里插入图片描述

ActivityThread:

main(){....Looper.prepareMainLooper();....// 创建ActivityThread对象,并绑定到AMSActivityThread thread = new ActivityThread();// 建立Binder通道,创建新线程,一般的应用程序都不会是system,因此设置false,会绑定到AMSthread.attach(false, startSeq);....Looper.loop();//可以保证线程一直存活throw new RuntimeException("Main thread loop unexpectedly exited");
}

Looper:

prepareMainLooper(){// 绑定当前线程和Looper ---- 面试题一:一个线程中可以有几个Looper对象?prepare(false) // 将sMainLooper赋值synchronized (Looper.class) {if (sMainLooper != null) {throw new IllegalStateException("The main Looper has already been prepared.");}sMainLooper = myLooper();}
}private static void prepare(boolean quitAllowed) {// 检查当前线程的ThreadLocal中是否存储了Looper对象,如果有的抛异常if (sThreadLocal.get() != null) {throw new RuntimeException("Only one Looper may be created per thread");}// 没有,就创建一个Looper对象,并存储在当前线程的ThreadLocal中sThreadLocal.set(new Looper(quitAllowed));
}// Looper的构造方法
private Looper(boolean quitAllowed) {// 创建消息队列mQueue = new MessageQueue(quitAllowed);mThread = Thread.currentThread();
}public static void loop() {// 检测当前loop对象是否存在final Looper me = myLooper();if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}// 获取消息队列final MessageQueue queue = me.mQueue; for (;;) { // 为什么不会一直占用cpu的资源Message msg = queue.next(); // might block// 当queue中没有消息时,则会调用 native void nativePollOnce(long, int),进行休眠// ....try {// 处理消息 ---- 此处见Handler-enqueueMessage,即调用的是Handler中的dispatchMessagemsg.target.dispatchMessage(msg);if (observer != null) {observer.messageDispatched(token, msg);}dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} catch (Exception exception) {if (observer != null) {observer.dispatchingThrewException(token, msg, exception);}throw exception;} finally {ThreadLocalWorkSource.restore(origWorkSource);if (traceTag != 0) {Trace.traceEnd(traceTag);}}// ....}
}

MessageQueue

// 取消息
Message next() {for (;;) {// ....//  nextPollTimeoutMillis // -1 则阻塞线程,直到被唤醒// 0 立即返回,不阻塞线程// 等待 nextPollTimeoutMillis 的时间nativePollOnce(ptr, nextPollTimeoutMillis);// ....}
}
// 消息加入队列
boolean enqueueMessage(Message msg, long when) {synchronized (this) {// ....// 唤醒线程if (needWake) {nativeWake(mPtr);}}return true;
}

Handler

public Handler(@Nullable Callback callback, boolean async) {// 获取当前线程的LoopermLooper = Looper.myLooper();if (mLooper == null) {throw new RuntimeException("Can't create handler inside thread " + Thread.currentThread()+ " that has not called Looper.prepare()");}// 获取当前的消息队列mQueue = mLooper.mQueue;mCallback = callback;mAsynchronous = async;
}
// 所有的方法最终都会执行这个方法
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {// 将消息加入当前线程Looper对象中的消息队列中MessageQueue queue = mQueue;return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,long uptimeMillis) {// 执行器就是当前的handlermsg.target = this;// 加入消息队列return queue.enqueueMessage(msg, uptimeMillis);
}
public void dispatchMessage(@NonNull Message msg) {if (msg.callback != null) {handleCallback(msg);} else {// Handler 构造方法中的回调if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}
}
// 提供开发者复写
public void handleMessage(@NonNull Message msg) {}
private static void handleCallback(Message message) {// message callback 是Runnable的子类message.callback.run();
}

这篇关于Looper,Handler,MessageQueue的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488443

相关文章

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺