【量化】实战恒有数获取指数定投的数据源

2023-12-13 08:30

本文主要是介绍【量化】实战恒有数获取指数定投的数据源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:幻好

来源: 恒生LIGHT云社区

本文主要基于恒有数平台获取指数定投所需数据源的过程实践。

原文: 【量化】用数据验证巴菲特推荐的指数定投的收益真相

恒有数简介

恒有数金融数据社区 ( https://udata.hs.net ),源自恒生的金融数据开放和可视化社区,旨在为量化投资爱好者、金融从业人员、高校师生、政府机构和财经媒体等人群提供专业的金融数据服务,满足不同用户丰富多样的数据分析和投资研究需求。

恒有数提供涵盖股票、基金、债券、期权期货、港股等金融数据(数据目录见附录1)。提供在线预览、在线下载和在线调试等功能,简单高效的API接口(接口语言包括HTTP、Python、MATLAB、Java),丰富的接口文档与帮助文档,使得用户可以方便快捷地获取数据。

未来,恒有数还会继续扩充专业数据,完善产品功能,不断提升服务能力。

指数定投简介

指数定投是定期投资指数基金的简称,指的是在固定的时间,以固定的金额,投资到指定的开放式基金中,这是懒人投资理财的最佳方法。这种方式通过积少成多,聚沙成塔,分散和平摊风险,不会因股票市场的一时波动影响正常的生活和情绪。在交易市场中,由于指数编制的方式,指数上涨是大概率事件,这也符合投资是追求确定性的要义。

采集数据源过程

注册恒有数平台

注册并登录恒有数平台,获取数据接口请求Token,地址: https://udata.hs.net/console/overAllView。

获取所需数据源

根据需求,需要获取以下数据字段:

  • 交易日期 :交易日期
  • 股票代码 :股票的代码,上证股票以sh结尾,深证股票以sz结尾
  • 开盘价 :当日股票股票开盘价格
  • 最高价 :当日股票交易最高价格
  • 最低价 :当日股票交易最低价格
  • 收盘价 :股票收盘价格
  • 成交量 :当日股票成交量
  • 成交额 :当日股票成交额
  • 涨跌幅 :复权之后的真实准确涨跌幅
  • 总市值 :当日股票总股价
  • 换手率 :当日股票换手比例
  • 涨跌停状态 :本月股票最后一个交易日收盘是否涨停
  • 交易状态 :本月股票最后一个交易日是否交易

需要获取数据的接口如下:

  • 1.1.2 交易日历 ( https://udata.hs.net/datas/200/)
    • 获取交易日时间
  • 1.2.1 股票日行情( https://udata.hs.net/datas/332/)
    • 获取沪深日行情,包含昨收价、开盘价、最高价、最低价、收盘价、成交量、成交金额等数据;

数据部分程序代码如下:

import pandas as pd
import numpy as np
import config.sys_config as config
import hs_udata as hs
import time"""
获取 沪深证券交易所 指定范围的交易日期集合
"""
def get_trade_dates(start_date, end_date=' '):# 开始时间if not start_date or not start_date.rfind('-'):start_date = ' 'start_year = int(start_date.split('-')[0], base=10)# 结束时间end_year = int(time.strftime("%Y", time.localtime()), base=10)if end_date == ' ' or not start_date.rfind('-'):end_date = ' 'else:end_year = int(end_date.split('-')[0], base=10)# 获取交易日期集合trade_date_df = pd.DataFrame()while True:if start_year > end_year:breakif trade_date_df.size <= 0:trade_date_df = hs.trading_calendar(secu_market='83',if_trading_day='1',start_date=start_date)else:trade_date_df = trade_date_df.append(hs.trading_calendar(secu_market='83',if_trading_day='1',start_date=start_date), ignore_index=True)start_year = start_year + 1start_date = str(start_year) + start_date[4:]# 去除重复交易日trade_date_df = trade_date_df.drop_duplicates()print(trade_date_df.head())return trade_date_df# 获取股票日数据: 交易日期 股票行情,公司等信息
def get_stock_day_data(secu_code, trade_date):# 获取数据:产品代码,交易日期,开盘价,最高价,最低价,收盘价,成交数量,成交额,涨跌幅,换手率,涨跌停状态,交易状态stock_fields = "prod_code,trading_date,open_price,high_price,low_price,close_price,business_amount,business_balance,px_change_rate,turnover_ratio,up_down_status,turnover_status"stock_data = hs.stock_quote_daily(en_prod_code=secu_code,trading_date=trade_date,adjust_way=2,fields=stock_fields)print(stock_data.head())return stock_data# 执行程序
def execute_procedure(stock_code_list, trade_date, mode='new'):for stock_code in stock_code_list:res_data = get_stock_day_data(stock_code, trade_date)res_data['close_price'].replace('', np.nan, inplace=True)res_data.dropna(subset=['close_price'], inplace=True)if mode == 'new':res_data.to_csv("temp/" + stock_code + ".csv", mode='w', index=False, encoding="utf-8")else:res_data.to_csv("temp/" + stock_code + ".csv", mode='a', index=False, header=False, encoding="utf-8")"""
程序执行入口
"""
if __name__ == '__main__':# 需要查询的产品code信息,000001.SH 上证指数prod_code_list = ['000001.SH']hs.set_token(config.HsData().get_token())trade_dates_df = get_trade_dates(start_date='2010-01-01')  # 获取交易时间集合# 执行程序采集数据mode = 'new'count = 0for trade_date in trade_dates_df['trading_date']:print("执行日期:", trade_date)if count > 0:mode = 'add'execute_procedure(prod_code_list, trade_date, mode)count = count + 1

执行程序获取到的结果如图所示:

image-20211204130618104.png

总结

通过恒有数获取股票基金等金融数据,即使初级小白也能快速上手,大大提升了金融数据分析等应用的效率。

这篇关于【量化】实战恒有数获取指数定投的数据源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487761

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹