F28335上实现浮点FFT

2023-12-12 22:10
文章标签 实现 浮点 fft f28335

本文主要是介绍F28335上实现浮点FFT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击打开链接

硬件:

  1. ICETEK-F28335-A开发板 花了1900米买来,硬件和配套的软件(TI提供的例程加上一点icetek实验)都比较粗糙,文档错误不少,整个东东给人的感觉是匆忙的赶工出来的,不过总算有个可以跑的硬件平台,软件基本可以无视icetek的(除了存储器空间分配,不过icetek在这个问题上和我开了一个玩笑,拿到手的资料讲特别提到外部RAM映射到zone7,测试确怎么都不对,所以奇怪了好一阵,试了换到zone6才恍然大悟,icetek这样的错误也能犯,无语了)资料。
  2. SEEDDSP的USB510仿真器,由于SEEDDSP还未有正式版的驱动发布,所以向seeddsp的zag兄讨了一份测试版的驱动,几个月下来倒也没出什么问题。

软件:

开发环境:

  1. CCS3.3.54
  2. 浮点支持库 文件名:  setup_C28XFPU_CSP_v3[1].3.1207.exe  下载地址: http://www.fs2you.com/files/e86a863a-57e2-11dd-9007-0014221b798a/

    大小:5.7M

  3. C2000代码生成器 文件名:  C2000CodeGenerationTools5[1].0.0Beta2.exe

    下载地址:  http://www.fs2you.com/files/c8217dd4-57e2-11dd-ac64-0014221b798a/

    大小:12.4M

  4. 浮点信号处理库 提供了实时浮点fft算法 C28x Floating-Point Unit Library 1.00 Beta1 http://focus.ti.com.cn/cn/lit/sw/sprc624/sprc624.zip

安装好上述软件后,在ccs的component manager里边选择Code Composer Studio->build tools->tms320c28xx->选中Texas Instrument C2000 Code generation tools<5.0.0B2> 保存设置退出,Rebuild project,就不会出现下面的报错了。

WARNING: invalid compiler option --float_support=fpu32 (ignored)

              C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\TI2323, line 24:   error:

               can't find input file 'rts2800_fpu32.lib'

从外部存储器执行的FFT测试代码:fft输入数据和输出数据定位在外部存储器空间zone6, 包括FFT功能的timer0中断服务程序从zone6执行。

以下是代码:

//###########################################################################

//

// FILE:    Example_2833xFFTExecuteFromXINTF.c

//

// TITLE:   Example FFT Program That Executes From XINTF

//

// ASSUMPTIONS:

//

//    This program requires the DSP2833x header files.

//

//    As supplied, this project is configured for "boot to SARAM"

//    operation.  The 2833x Boot Mode table is shown below.

//    For information on configuring the boot mode of an eZdsp,

//    please refer to the documentation included with the eZdsp,

//

//       $Boot_Table:

//

//         GPIO87   GPIO86     GPIO85   GPIO84

//          XA15     XA14       XA13     XA12

//           PU       PU         PU       PU

//        ==========================================

//            1        1          1        1    Jump to Flash

//            1        1          1        0    SCI-A boot

//            1        1          0        1    SPI-A boot

//            1        1          0        0    I2C-A boot

//            1        0          1        1    eCAN-A boot

//            1        0          1        0    McBSP-A boot

//            1        0          0        1    Jump to XINTF x16

//            1        0          0        0    Jump to XINTF x32

//            0        1          1        1    Jump to OTP

//            0        1          1        0    Parallel GPIO I/O boot

//            0        1          0        1    Parallel XINTF boot

//            0        1          0        0    Jump to SARAM        <- "boot to SARAM"

//            0        0          1        1    Branch to check boot mode

//            0        0          1        0    Boot to flash, bypass ADC cal

//            0        0          0        1    Boot to SARAM, bypass ADC cal

//            0        0          0        0    Boot to SCI-A, bypass ADC cal

//                                              Boot_Table_End$

//

// DESCRIPTION:

//

//          This example configures CPU Timer0 and increments

//          a counter each time the timer asserts an interrupt.

//

//          The ISR code is loaded into SARAM.  The XINTF Zone 6 is

//          configured for x16-bit data bus.  A porition of the code including FFT

//          is copied to XINTF for execution there.

//

//       Watch Variables:

//          CpuTimer0.InterruptCount

//          InBuffer

//          OutBuffer

//          MagBuffer

//###########################################################################

// $TI Release: DSP2833x Header Files V1.10 $

// $Release Date: February 15, 2008 $

//###########################################################################

#include "DSP2833x_Device.h"         // DSP2833x Headerfile

#include "DSP2833x_Examples.h"      // DSP2833x Examples headerfile

#include "math.h"

#define PI 3.1415926

// This function will be loaded into SARAM and copied to

// XINTF zone 6 for execution

#pragma CODE_SECTION(cpu_timer0_isr,"xintffuncs");

//LED indicating the state of ISR execution

#define LED (*(unsigned short int *)0x180000)

//FFT Parameters

#include "FPU.h"

#define FFT_SIZE   1024        /* 32, 64, 128, 256, etc        */

#define FFT_STAGES   10        /* log2(FFT_SIZE)               */

/* Align the INBUF section to 2*FFT_SIZE in the linker file   */

#pragma DATA_SECTION(InBuffer, "FFTBUF");

float32 InBuffer[FFT_SIZE];

#pragma DATA_SECTION(OutBuffer, "ZONE6DATA");

float32 OutBuffer[FFT_SIZE];

#pragma DATA_SECTION(TwiddleBuffer, "ZONE6DATA");

float32 TwiddleBuffer[FFT_SIZE];

#pragma DATA_SECTION(MagBuffer, "ZONE6DATA");

float32 MagBuffer[FFT_SIZE/2];

RFFT_F32_STRUCT fft; 

float32 a1=1.0,a2=100.0,a3=10000.0;//amplitudes

float32 f1=5.00,f2=25.00,f3=45.00; //frequencies

// Prototype statements for functions found within this file:

void init_zone6(void);

interrupt void cpu_timer0_isr(void);

void main(void)

{

   unsigned int i;

// Step 1. Initialize System Control:

// PLL, WatchDog, enable Peripheral Clocks

// This example function is found in the DSP2833x_SysCtrl.c file.

   InitSysCtrl();

// Step 2. Initalize GPIO:

// This example function is found in the DSP2833x_Gpio.c file and

// illustrates how to set the GPIO to it's default state.

// InitGpio();  // Skipped for this example

// Step 3. Clear all interrupts and initialize PIE vector table:

// Disable CPU interrupts

   DINT;

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags

// are cleared.

// This function is found in the DSP2833x_PieCtrl.c file.

   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:

   IER = 0x0000;

   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt

// Service Routines (ISR).

// This will populate the entire table, even if the interrupt

// is not used in this example.  This is useful for debug purposes.

// The shell ISR routines are found in DSP2833x_DefaultIsr.c.

// This function is found in DSP2833x_PieVect.c.

   InitPieVectTable();

// Interrupts that are used in this example are re-mapped to

// ISR functions found within this file.

   EALLOW;  // This is needed to write to EALLOW protected registers

   PieVectTable.TINT0 = &cpu_timer0_isr;

   EDIS;    // This is needed to disable write to EALLOW protected registers

// Step 4. Initialize the Device Peripheral. This function can be

//         found in DSP2833x_CpuTimers.c

   InitCpuTimers();   // For this example, only initialize the Cpu Timers

// Configure CPU-Timer 0, 1, and 2 to interrupt every second:

// 100MHz CPU Freq, 1 second Period (in uSeconds)

   ConfigCpuTimer(&CpuTimer0, 100, 10000);

// To ensure precise timing, use write-only instructions to write to the entire register. Therefore, if any

// of the configuration bits are changed in ConfigCpuTimer and InitCpuTimers (in DSP2833x_CpuTimers.h), the

// below settings must also be updated.

   CpuTimer0Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0

// Step 5. User specific code, enable interrupts:

// Initalize XINTF Zone 6

   init_zone6();

// Copy non-time critical code to XINTF

// This includes the following ISR functions: cpu_timer0_isr(), cpu_timer1_isr()

// The  XintffuncsLoadStart, XintffuncsLoadEnd, and XintffuncsRunStart

// symbols are created by the linker. Refer to the F28335_ram_xintf.cmd file.

   MemCopy(&XintffuncsLoadStart, &XintffuncsLoadEnd, &XintffuncsRunStart);

   for(i=0;i<FFT_SIZE;i++)

   {

           InBuffer[i] = a1 * sin(2 * PI * f1 * i / FFT_SIZE) + a2 * sin(2 * PI * f2 * i / FFT_SIZE)+a3 * sin(2 * PI * f3 * i / FFT_SIZE);

   }

  fft.InBuf = InBuffer;     /* Input data buffer      */

  fft.OutBuf = OutBuffer;    /* FFT output buffer      */

  fft.CosSinBuf = TwiddleBuffer;/* Twiddle factor buffer  */

  fft.FFTSize = FFT_SIZE;    /* FFT length             */

  fft.FFTStages = FFT_STAGES;    /* FFT Stages             */

  fft.MagBuf = MagBuffer;       /* Magnitude buffer      */   

  RFFT_f32_sincostable(&fft); /* Initialize twiddle buffer */

// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13

// which is connected to CPU-Timer 1, and CPU int 14, which is connected

// to CPU-Timer 2:

   IER |= M_INT1;

// Enable TINT0 in the PIE: Group 1 interrupt 7

   PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

// Enable global Interrupts and higher priority real-time debug events:

   EINT;   // Enable Global interrupt INTM

   ERTM;   // Enable Global realtime interrupt DBGM

// Step 6. IDLE loop. Just sit and loop forever (optional):

   for(;;);

}

interrupt void cpu_timer0_isr(void)

{

   unsigned int i;

   CpuTimer0.InterruptCount++;

   for(i = 0; i < FFT_SIZE; i++)

   {

           InBuffer[i] = a1 * sin( 2 * PI * f1 * i / FFT_SIZE) + a2 * sin( 2 * PI * f2 * i / FFT_SIZE)+a3*sin(2*PI*f3*i/FFT_SIZE);

   }

   RFFT_f32(&fft);        /* Calculate output          */

   RFFT_f32s_mag(&fft);      /* Calculate magnitude       */

   LED = CpuTimer0.InterruptCount;

   // Acknowledge this interrupt to receive more interrupts from group 1

   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

// Configure the timing paramaters for Zone 7.

// Notes:

//    This function should not be executed from XINTF

//    Adjust the timing based on the data manual and

//    external device requirements.

void init_zone6(void)

{

    // Make sure the XINTF clock is enabled

    SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;

    // Configure the GPIO for XINTF with a 16-bit data bus

    // This function is in DSP2833x_Xintf.c

    InitXintf16Gpio();

    EALLOW;

    // All Zones---------------------------------

    // Timing for all zones based on XTIMCLK = SYSCLKOUT

    XintfRegs.XINTCNF2.bit.XTIMCLK = 0;

    // Buffer up to 3 writes

    XintfRegs.XINTCNF2.bit.WRBUFF = 3;

    // XCLKOUT is enabled

    XintfRegs.XINTCNF2.bit.CLKOFF = 0;

    // XCLKOUT = XTIMCLK

    XintfRegs.XINTCNF2.bit.CLKMODE = 0;

    // Zone 6------------------------------------

    // When using ready, ACTIVE must be 1 or greater

    // Lead must always be 1 or greater

    // Zone write timing

    XintfRegs.XTIMING6.bit.XWRLEAD = 1;

    XintfRegs.XTIMING6.bit.XWRACTIVE = 2;

    XintfRegs.XTIMING6.bit.XWRTRAIL = 1;

    // Zone read timing

    XintfRegs.XTIMING6.bit.XRDLEAD = 1;

    XintfRegs.XTIMING6.bit.XRDACTIVE = 3;

    XintfRegs.XTIMING6.bit.XRDTRAIL = 0;

    // don't double all Zone read/write lead/active/trail timing

    XintfRegs.XTIMING6.bit.X2TIMING = 0;

    // Zone will not sample XREADY signal

    XintfRegs.XTIMING6.bit.USEREADY = 0;

    XintfRegs.XTIMING6.bit.READYMODE = 0;

    // 1,1 = x16 data bus

    // 0,1 = x32 data bus

    // other values are reserved

    XintfRegs.XTIMING6.bit.XSIZE = 3;

    EDIS;

   //Force a pipeline flush to ensure that the write to

   //the last register configured occurs before returning.

   asm(" RPT #7 || NOP");

}

//===========================================================================

// No more.

//===========================================================================

 

 

/*

// TI File $Revision: /main/1 $

// Checkin $Date: August 29, 2007   14:08:00 $

//###########################################################################

//

// FILE:    28335_RAM_xintf_lnk.cmd

//

// TITLE:   Linker Command File For 28335 examples that run out of RAM

//

//          This ONLY includes all SARAM blocks on the 28335 device.

//          This does not include flash or OTP.

//

//          Keep in mind that L0 and L1 are protected by the code

//          security module.

//

//          What this means is in most cases you will want to move to

//          another memory map file which has more memory defined. 

//

//###########################################################################

// $TI Release: DSP2833x Header Files V1.10 $

// $Release Date: February 15, 2008 $

//###########################################################################

*/

/* ======================================================

// For Code Composer Studio V2.2 and later

// ---------------------------------------

// In addition to this memory linker command file,

// add the header linker command file directly to the project.

// The header linker command file is required to link the

// peripheral structures to the proper locations within

// the memory map.

//

// The header linker files are found in <base>\DSP2833x_Headers\cmd

//  

// For BIOS applications add:      DSP2833x_Headers_BIOS.cmd

// For nonBIOS applications add:   DSP2833x_Headers_nonBIOS.cmd   

========================================================= */

/* ======================================================

// For Code Composer Studio prior to V2.2

// --------------------------------------

// 1) Use one of the following -l statements to include the

// header linker command file in the project. The header linker

// file is required to link the peripheral structures to the proper

// locations within the memory map                                    */

/* Uncomment this line to include file only for non-BIOS applications */

/* -l DSP2833x_Headers_nonBIOS.cmd */

/* Uncomment this line to include file only for BIOS applications */

/* -l DSP2833x_Headers_BIOS.cmd */

/* 2) In your project add the path to <base>\DSP2833x_headers\cmd to the

   library search path under project->build options, linker tab,

   library search path (-i).

/*========================================================= */

/* Define the memory block start/length for the F28335 

   PAGE 0 will be used to organize program sections

   PAGE 1 will be used to organize data sections

   Notes:

         Memory blocks on F28335 are uniform (ie same

         physical memory) in both PAGE 0 and PAGE 1. 

         That is the same memory region should not be

         defined for both PAGE 0 and PAGE 1.

         Doing so will result in corruption of program

         and/or data.

         L0/L1/L2 and L3 memory blocks are mirrored - that is

         they can be accessed in high memory or low memory.

         For simplicity only one instance is used in this

         linker file.

         Contiguous SARAM memory blocks can be combined

         if required to create a larger memory block.

*/

MEMORY

{

PAGE 0 :

   /* BEGIN is used for the "boot to SARAM" bootloader mode      */

   /* BOOT_RSVD is used by the boot ROM for stack.               */

   /* This section is only reserved to keep the BOOT ROM from    */

   /* corrupting this area during the debug process              */

   BEGIN      : origin = 0x000000, length = 0x000002     /* Boot to M0 will go here                      */

   BOOT_RSVD  : origin = 0x000002, length = 0x00004E     /* Part of M0, BOOT rom will use this for stack */              

   RAMM0      : origin = 0x000050, length = 0x0003B0

   RAML0      : origin = 0x008000, length = 0x001000   

   RAML1      : origin = 0x009000, length = 0x001000   

   RAML2      : origin = 0x00A000, length = 0x001000   

   RAML3      : origin = 0x00B000, length = 0x001000

   ZONE6A     : origin = 0x100000, length = 0x00E000     /* XINTF zone 6 - program space */

   CSM_RSVD   : origin = 0x33FF80, length = 0x000076     /* Part of FLASHA.  Program with all 0x0000 when CSM is in use. */

   CSM_PWL    : origin = 0x33FFF8, length = 0x000008     /* Part of FLASHA.  CSM password locations in FLASHA            */

   ADC_CAL    : origin = 0x380080, length = 0x000009

   RESET      : origin = 0x3FFFC0, length = 0x000002

   IQTABLES   : origin = 0x3FE000, length = 0x000b50

   IQTABLES2  : origin = 0x3FEB50, length = 0x00008c

   FPUTABLES  : origin = 0x3FEBDC, length = 0x0006A0

   BOOTROM    : origin = 0x3FF27C, length = 0x000D44              

PAGE 1 :

   RAMM1      : origin = 0x000400, length = 0x000400     /* on-chip RAM block M1 */

   RAML4      : origin = 0x00C000, length = 0x001000   

   RAML5      : origin = 0x00D000, length = 0x001000   

   RAML6      : origin = 0x00E000, length = 0x001000   

   RAML7      : origin = 0x00F000, length = 0x001000

   ZONE6B     : origin = 0x10E000, length = 0x002000     /* XINTF zone 6 - data space */

}

SECTIONS

{

   /* Setup for "boot to SARAM" mode:

      The codestart section (found in DSP28_CodeStartBranch.asm)

      re-directs execution to the start of user code.  */

   codestart        : > BEGIN,     PAGE = 0

   ramfuncs         : > RAML0,     PAGE = 0 

   .text            : > RAML1,     PAGE = 0

   .cinit           : > RAML0,     PAGE = 0

   .pinit           : > RAML0,     PAGE = 0

   .switch          : > RAML0,     PAGE = 0

   xintffuncs       : LOAD = RAML1,

                      RUN = ZONE6A,

                      LOAD_START(_XintffuncsLoadStart),

                      LOAD_END(_XintffuncsLoadEnd),

                      RUN_START(_XintffuncsRunStart),

                      PAGE = 0

   .stack           : > RAMM1,     PAGE = 1

   .ebss            : > RAML4,     PAGE = 1

   .econst          : > RAML5,     PAGE = 1     

   .esysmem         : > RAMM1,     PAGE = 1

   IQmath           : > RAML1,     PAGE = 0

   IQmathTables     : > IQTABLES,  PAGE = 0, TYPE = NOLOAD

   IQmathTables2    : > IQTABLES2, PAGE = 0, TYPE = NOLOAD

   FPUmathTables    : > FPUTABLES, PAGE = 0, TYPE = NOLOAD

   DMARAML4         : > RAML4,     PAGE = 1

   DMARAML5         : > RAML5,     PAGE = 1

   DMARAML6         : > RAML6,     PAGE = 1

   DMARAML7         : > RAML7,     PAGE = 1

   FFTBUF   ALIGN( 2048 ) : { } >   RAML6  PAGE 1

   //FFTBUF   ALIGN( 2048 ) : { } >   ZONE6B PAGE 1

   ZONE6DATA        : > ZONE6B,    PAGE = 1 

   .reset           : > RESET,     PAGE = 0, TYPE = DSECT /* not used                    */

   csm_rsvd         : > CSM_RSVD   PAGE = 0, TYPE = DSECT /* not used for SARAM examples */

   csmpasswds       : > CSM_PWL    PAGE = 0, TYPE = DSECT /* not used for SARAM examples */

   /* Allocate ADC_cal function (pre-programmed by factory into TI reserved memory) */

   .adc_cal     : load = ADC_CAL,   PAGE = 0, TYPE = NOLOAD

}

/*

//===========================================================================

// End of file.

//===========================================================================

*/

结果截图如下:

F28335上实现浮点FFT - 酷浪 - 铁军的家


这篇关于F28335上实现浮点FFT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/486116

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机