F28335上实现浮点FFT

2023-12-12 22:10
文章标签 实现 浮点 fft f28335

本文主要是介绍F28335上实现浮点FFT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击打开链接

硬件:

  1. ICETEK-F28335-A开发板 花了1900米买来,硬件和配套的软件(TI提供的例程加上一点icetek实验)都比较粗糙,文档错误不少,整个东东给人的感觉是匆忙的赶工出来的,不过总算有个可以跑的硬件平台,软件基本可以无视icetek的(除了存储器空间分配,不过icetek在这个问题上和我开了一个玩笑,拿到手的资料讲特别提到外部RAM映射到zone7,测试确怎么都不对,所以奇怪了好一阵,试了换到zone6才恍然大悟,icetek这样的错误也能犯,无语了)资料。
  2. SEEDDSP的USB510仿真器,由于SEEDDSP还未有正式版的驱动发布,所以向seeddsp的zag兄讨了一份测试版的驱动,几个月下来倒也没出什么问题。

软件:

开发环境:

  1. CCS3.3.54
  2. 浮点支持库 文件名:  setup_C28XFPU_CSP_v3[1].3.1207.exe  下载地址: http://www.fs2you.com/files/e86a863a-57e2-11dd-9007-0014221b798a/

    大小:5.7M

  3. C2000代码生成器 文件名:  C2000CodeGenerationTools5[1].0.0Beta2.exe

    下载地址:  http://www.fs2you.com/files/c8217dd4-57e2-11dd-ac64-0014221b798a/

    大小:12.4M

  4. 浮点信号处理库 提供了实时浮点fft算法 C28x Floating-Point Unit Library 1.00 Beta1 http://focus.ti.com.cn/cn/lit/sw/sprc624/sprc624.zip

安装好上述软件后,在ccs的component manager里边选择Code Composer Studio->build tools->tms320c28xx->选中Texas Instrument C2000 Code generation tools<5.0.0B2> 保存设置退出,Rebuild project,就不会出现下面的报错了。

WARNING: invalid compiler option --float_support=fpu32 (ignored)

              C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\TI2323, line 24:   error:

               can't find input file 'rts2800_fpu32.lib'

从外部存储器执行的FFT测试代码:fft输入数据和输出数据定位在外部存储器空间zone6, 包括FFT功能的timer0中断服务程序从zone6执行。

以下是代码:

//###########################################################################

//

// FILE:    Example_2833xFFTExecuteFromXINTF.c

//

// TITLE:   Example FFT Program That Executes From XINTF

//

// ASSUMPTIONS:

//

//    This program requires the DSP2833x header files.

//

//    As supplied, this project is configured for "boot to SARAM"

//    operation.  The 2833x Boot Mode table is shown below.

//    For information on configuring the boot mode of an eZdsp,

//    please refer to the documentation included with the eZdsp,

//

//       $Boot_Table:

//

//         GPIO87   GPIO86     GPIO85   GPIO84

//          XA15     XA14       XA13     XA12

//           PU       PU         PU       PU

//        ==========================================

//            1        1          1        1    Jump to Flash

//            1        1          1        0    SCI-A boot

//            1        1          0        1    SPI-A boot

//            1        1          0        0    I2C-A boot

//            1        0          1        1    eCAN-A boot

//            1        0          1        0    McBSP-A boot

//            1        0          0        1    Jump to XINTF x16

//            1        0          0        0    Jump to XINTF x32

//            0        1          1        1    Jump to OTP

//            0        1          1        0    Parallel GPIO I/O boot

//            0        1          0        1    Parallel XINTF boot

//            0        1          0        0    Jump to SARAM        <- "boot to SARAM"

//            0        0          1        1    Branch to check boot mode

//            0        0          1        0    Boot to flash, bypass ADC cal

//            0        0          0        1    Boot to SARAM, bypass ADC cal

//            0        0          0        0    Boot to SCI-A, bypass ADC cal

//                                              Boot_Table_End$

//

// DESCRIPTION:

//

//          This example configures CPU Timer0 and increments

//          a counter each time the timer asserts an interrupt.

//

//          The ISR code is loaded into SARAM.  The XINTF Zone 6 is

//          configured for x16-bit data bus.  A porition of the code including FFT

//          is copied to XINTF for execution there.

//

//       Watch Variables:

//          CpuTimer0.InterruptCount

//          InBuffer

//          OutBuffer

//          MagBuffer

//###########################################################################

// $TI Release: DSP2833x Header Files V1.10 $

// $Release Date: February 15, 2008 $

//###########################################################################

#include "DSP2833x_Device.h"         // DSP2833x Headerfile

#include "DSP2833x_Examples.h"      // DSP2833x Examples headerfile

#include "math.h"

#define PI 3.1415926

// This function will be loaded into SARAM and copied to

// XINTF zone 6 for execution

#pragma CODE_SECTION(cpu_timer0_isr,"xintffuncs");

//LED indicating the state of ISR execution

#define LED (*(unsigned short int *)0x180000)

//FFT Parameters

#include "FPU.h"

#define FFT_SIZE   1024        /* 32, 64, 128, 256, etc        */

#define FFT_STAGES   10        /* log2(FFT_SIZE)               */

/* Align the INBUF section to 2*FFT_SIZE in the linker file   */

#pragma DATA_SECTION(InBuffer, "FFTBUF");

float32 InBuffer[FFT_SIZE];

#pragma DATA_SECTION(OutBuffer, "ZONE6DATA");

float32 OutBuffer[FFT_SIZE];

#pragma DATA_SECTION(TwiddleBuffer, "ZONE6DATA");

float32 TwiddleBuffer[FFT_SIZE];

#pragma DATA_SECTION(MagBuffer, "ZONE6DATA");

float32 MagBuffer[FFT_SIZE/2];

RFFT_F32_STRUCT fft; 

float32 a1=1.0,a2=100.0,a3=10000.0;//amplitudes

float32 f1=5.00,f2=25.00,f3=45.00; //frequencies

// Prototype statements for functions found within this file:

void init_zone6(void);

interrupt void cpu_timer0_isr(void);

void main(void)

{

   unsigned int i;

// Step 1. Initialize System Control:

// PLL, WatchDog, enable Peripheral Clocks

// This example function is found in the DSP2833x_SysCtrl.c file.

   InitSysCtrl();

// Step 2. Initalize GPIO:

// This example function is found in the DSP2833x_Gpio.c file and

// illustrates how to set the GPIO to it's default state.

// InitGpio();  // Skipped for this example

// Step 3. Clear all interrupts and initialize PIE vector table:

// Disable CPU interrupts

   DINT;

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags

// are cleared.

// This function is found in the DSP2833x_PieCtrl.c file.

   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:

   IER = 0x0000;

   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt

// Service Routines (ISR).

// This will populate the entire table, even if the interrupt

// is not used in this example.  This is useful for debug purposes.

// The shell ISR routines are found in DSP2833x_DefaultIsr.c.

// This function is found in DSP2833x_PieVect.c.

   InitPieVectTable();

// Interrupts that are used in this example are re-mapped to

// ISR functions found within this file.

   EALLOW;  // This is needed to write to EALLOW protected registers

   PieVectTable.TINT0 = &cpu_timer0_isr;

   EDIS;    // This is needed to disable write to EALLOW protected registers

// Step 4. Initialize the Device Peripheral. This function can be

//         found in DSP2833x_CpuTimers.c

   InitCpuTimers();   // For this example, only initialize the Cpu Timers

// Configure CPU-Timer 0, 1, and 2 to interrupt every second:

// 100MHz CPU Freq, 1 second Period (in uSeconds)

   ConfigCpuTimer(&CpuTimer0, 100, 10000);

// To ensure precise timing, use write-only instructions to write to the entire register. Therefore, if any

// of the configuration bits are changed in ConfigCpuTimer and InitCpuTimers (in DSP2833x_CpuTimers.h), the

// below settings must also be updated.

   CpuTimer0Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0

// Step 5. User specific code, enable interrupts:

// Initalize XINTF Zone 6

   init_zone6();

// Copy non-time critical code to XINTF

// This includes the following ISR functions: cpu_timer0_isr(), cpu_timer1_isr()

// The  XintffuncsLoadStart, XintffuncsLoadEnd, and XintffuncsRunStart

// symbols are created by the linker. Refer to the F28335_ram_xintf.cmd file.

   MemCopy(&XintffuncsLoadStart, &XintffuncsLoadEnd, &XintffuncsRunStart);

   for(i=0;i<FFT_SIZE;i++)

   {

           InBuffer[i] = a1 * sin(2 * PI * f1 * i / FFT_SIZE) + a2 * sin(2 * PI * f2 * i / FFT_SIZE)+a3 * sin(2 * PI * f3 * i / FFT_SIZE);

   }

  fft.InBuf = InBuffer;     /* Input data buffer      */

  fft.OutBuf = OutBuffer;    /* FFT output buffer      */

  fft.CosSinBuf = TwiddleBuffer;/* Twiddle factor buffer  */

  fft.FFTSize = FFT_SIZE;    /* FFT length             */

  fft.FFTStages = FFT_STAGES;    /* FFT Stages             */

  fft.MagBuf = MagBuffer;       /* Magnitude buffer      */   

  RFFT_f32_sincostable(&fft); /* Initialize twiddle buffer */

// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13

// which is connected to CPU-Timer 1, and CPU int 14, which is connected

// to CPU-Timer 2:

   IER |= M_INT1;

// Enable TINT0 in the PIE: Group 1 interrupt 7

   PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

// Enable global Interrupts and higher priority real-time debug events:

   EINT;   // Enable Global interrupt INTM

   ERTM;   // Enable Global realtime interrupt DBGM

// Step 6. IDLE loop. Just sit and loop forever (optional):

   for(;;);

}

interrupt void cpu_timer0_isr(void)

{

   unsigned int i;

   CpuTimer0.InterruptCount++;

   for(i = 0; i < FFT_SIZE; i++)

   {

           InBuffer[i] = a1 * sin( 2 * PI * f1 * i / FFT_SIZE) + a2 * sin( 2 * PI * f2 * i / FFT_SIZE)+a3*sin(2*PI*f3*i/FFT_SIZE);

   }

   RFFT_f32(&fft);        /* Calculate output          */

   RFFT_f32s_mag(&fft);      /* Calculate magnitude       */

   LED = CpuTimer0.InterruptCount;

   // Acknowledge this interrupt to receive more interrupts from group 1

   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

// Configure the timing paramaters for Zone 7.

// Notes:

//    This function should not be executed from XINTF

//    Adjust the timing based on the data manual and

//    external device requirements.

void init_zone6(void)

{

    // Make sure the XINTF clock is enabled

    SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;

    // Configure the GPIO for XINTF with a 16-bit data bus

    // This function is in DSP2833x_Xintf.c

    InitXintf16Gpio();

    EALLOW;

    // All Zones---------------------------------

    // Timing for all zones based on XTIMCLK = SYSCLKOUT

    XintfRegs.XINTCNF2.bit.XTIMCLK = 0;

    // Buffer up to 3 writes

    XintfRegs.XINTCNF2.bit.WRBUFF = 3;

    // XCLKOUT is enabled

    XintfRegs.XINTCNF2.bit.CLKOFF = 0;

    // XCLKOUT = XTIMCLK

    XintfRegs.XINTCNF2.bit.CLKMODE = 0;

    // Zone 6------------------------------------

    // When using ready, ACTIVE must be 1 or greater

    // Lead must always be 1 or greater

    // Zone write timing

    XintfRegs.XTIMING6.bit.XWRLEAD = 1;

    XintfRegs.XTIMING6.bit.XWRACTIVE = 2;

    XintfRegs.XTIMING6.bit.XWRTRAIL = 1;

    // Zone read timing

    XintfRegs.XTIMING6.bit.XRDLEAD = 1;

    XintfRegs.XTIMING6.bit.XRDACTIVE = 3;

    XintfRegs.XTIMING6.bit.XRDTRAIL = 0;

    // don't double all Zone read/write lead/active/trail timing

    XintfRegs.XTIMING6.bit.X2TIMING = 0;

    // Zone will not sample XREADY signal

    XintfRegs.XTIMING6.bit.USEREADY = 0;

    XintfRegs.XTIMING6.bit.READYMODE = 0;

    // 1,1 = x16 data bus

    // 0,1 = x32 data bus

    // other values are reserved

    XintfRegs.XTIMING6.bit.XSIZE = 3;

    EDIS;

   //Force a pipeline flush to ensure that the write to

   //the last register configured occurs before returning.

   asm(" RPT #7 || NOP");

}

//===========================================================================

// No more.

//===========================================================================

 

 

/*

// TI File $Revision: /main/1 $

// Checkin $Date: August 29, 2007   14:08:00 $

//###########################################################################

//

// FILE:    28335_RAM_xintf_lnk.cmd

//

// TITLE:   Linker Command File For 28335 examples that run out of RAM

//

//          This ONLY includes all SARAM blocks on the 28335 device.

//          This does not include flash or OTP.

//

//          Keep in mind that L0 and L1 are protected by the code

//          security module.

//

//          What this means is in most cases you will want to move to

//          another memory map file which has more memory defined. 

//

//###########################################################################

// $TI Release: DSP2833x Header Files V1.10 $

// $Release Date: February 15, 2008 $

//###########################################################################

*/

/* ======================================================

// For Code Composer Studio V2.2 and later

// ---------------------------------------

// In addition to this memory linker command file,

// add the header linker command file directly to the project.

// The header linker command file is required to link the

// peripheral structures to the proper locations within

// the memory map.

//

// The header linker files are found in <base>\DSP2833x_Headers\cmd

//  

// For BIOS applications add:      DSP2833x_Headers_BIOS.cmd

// For nonBIOS applications add:   DSP2833x_Headers_nonBIOS.cmd   

========================================================= */

/* ======================================================

// For Code Composer Studio prior to V2.2

// --------------------------------------

// 1) Use one of the following -l statements to include the

// header linker command file in the project. The header linker

// file is required to link the peripheral structures to the proper

// locations within the memory map                                    */

/* Uncomment this line to include file only for non-BIOS applications */

/* -l DSP2833x_Headers_nonBIOS.cmd */

/* Uncomment this line to include file only for BIOS applications */

/* -l DSP2833x_Headers_BIOS.cmd */

/* 2) In your project add the path to <base>\DSP2833x_headers\cmd to the

   library search path under project->build options, linker tab,

   library search path (-i).

/*========================================================= */

/* Define the memory block start/length for the F28335 

   PAGE 0 will be used to organize program sections

   PAGE 1 will be used to organize data sections

   Notes:

         Memory blocks on F28335 are uniform (ie same

         physical memory) in both PAGE 0 and PAGE 1. 

         That is the same memory region should not be

         defined for both PAGE 0 and PAGE 1.

         Doing so will result in corruption of program

         and/or data.

         L0/L1/L2 and L3 memory blocks are mirrored - that is

         they can be accessed in high memory or low memory.

         For simplicity only one instance is used in this

         linker file.

         Contiguous SARAM memory blocks can be combined

         if required to create a larger memory block.

*/

MEMORY

{

PAGE 0 :

   /* BEGIN is used for the "boot to SARAM" bootloader mode      */

   /* BOOT_RSVD is used by the boot ROM for stack.               */

   /* This section is only reserved to keep the BOOT ROM from    */

   /* corrupting this area during the debug process              */

   BEGIN      : origin = 0x000000, length = 0x000002     /* Boot to M0 will go here                      */

   BOOT_RSVD  : origin = 0x000002, length = 0x00004E     /* Part of M0, BOOT rom will use this for stack */              

   RAMM0      : origin = 0x000050, length = 0x0003B0

   RAML0      : origin = 0x008000, length = 0x001000   

   RAML1      : origin = 0x009000, length = 0x001000   

   RAML2      : origin = 0x00A000, length = 0x001000   

   RAML3      : origin = 0x00B000, length = 0x001000

   ZONE6A     : origin = 0x100000, length = 0x00E000     /* XINTF zone 6 - program space */

   CSM_RSVD   : origin = 0x33FF80, length = 0x000076     /* Part of FLASHA.  Program with all 0x0000 when CSM is in use. */

   CSM_PWL    : origin = 0x33FFF8, length = 0x000008     /* Part of FLASHA.  CSM password locations in FLASHA            */

   ADC_CAL    : origin = 0x380080, length = 0x000009

   RESET      : origin = 0x3FFFC0, length = 0x000002

   IQTABLES   : origin = 0x3FE000, length = 0x000b50

   IQTABLES2  : origin = 0x3FEB50, length = 0x00008c

   FPUTABLES  : origin = 0x3FEBDC, length = 0x0006A0

   BOOTROM    : origin = 0x3FF27C, length = 0x000D44              

PAGE 1 :

   RAMM1      : origin = 0x000400, length = 0x000400     /* on-chip RAM block M1 */

   RAML4      : origin = 0x00C000, length = 0x001000   

   RAML5      : origin = 0x00D000, length = 0x001000   

   RAML6      : origin = 0x00E000, length = 0x001000   

   RAML7      : origin = 0x00F000, length = 0x001000

   ZONE6B     : origin = 0x10E000, length = 0x002000     /* XINTF zone 6 - data space */

}

SECTIONS

{

   /* Setup for "boot to SARAM" mode:

      The codestart section (found in DSP28_CodeStartBranch.asm)

      re-directs execution to the start of user code.  */

   codestart        : > BEGIN,     PAGE = 0

   ramfuncs         : > RAML0,     PAGE = 0 

   .text            : > RAML1,     PAGE = 0

   .cinit           : > RAML0,     PAGE = 0

   .pinit           : > RAML0,     PAGE = 0

   .switch          : > RAML0,     PAGE = 0

   xintffuncs       : LOAD = RAML1,

                      RUN = ZONE6A,

                      LOAD_START(_XintffuncsLoadStart),

                      LOAD_END(_XintffuncsLoadEnd),

                      RUN_START(_XintffuncsRunStart),

                      PAGE = 0

   .stack           : > RAMM1,     PAGE = 1

   .ebss            : > RAML4,     PAGE = 1

   .econst          : > RAML5,     PAGE = 1     

   .esysmem         : > RAMM1,     PAGE = 1

   IQmath           : > RAML1,     PAGE = 0

   IQmathTables     : > IQTABLES,  PAGE = 0, TYPE = NOLOAD

   IQmathTables2    : > IQTABLES2, PAGE = 0, TYPE = NOLOAD

   FPUmathTables    : > FPUTABLES, PAGE = 0, TYPE = NOLOAD

   DMARAML4         : > RAML4,     PAGE = 1

   DMARAML5         : > RAML5,     PAGE = 1

   DMARAML6         : > RAML6,     PAGE = 1

   DMARAML7         : > RAML7,     PAGE = 1

   FFTBUF   ALIGN( 2048 ) : { } >   RAML6  PAGE 1

   //FFTBUF   ALIGN( 2048 ) : { } >   ZONE6B PAGE 1

   ZONE6DATA        : > ZONE6B,    PAGE = 1 

   .reset           : > RESET,     PAGE = 0, TYPE = DSECT /* not used                    */

   csm_rsvd         : > CSM_RSVD   PAGE = 0, TYPE = DSECT /* not used for SARAM examples */

   csmpasswds       : > CSM_PWL    PAGE = 0, TYPE = DSECT /* not used for SARAM examples */

   /* Allocate ADC_cal function (pre-programmed by factory into TI reserved memory) */

   .adc_cal     : load = ADC_CAL,   PAGE = 0, TYPE = NOLOAD

}

/*

//===========================================================================

// End of file.

//===========================================================================

*/

结果截图如下:

F28335上实现浮点FFT - 酷浪 - 铁军的家


这篇关于F28335上实现浮点FFT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/486116

相关文章

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Pydantic中model_validator的实现

《Pydantic中model_validator的实现》本文主要介绍了Pydantic中model_validator的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录引言基础知识创建 Pydantic 模型使用 model_validator 装饰器高级用法mo

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N