【ITK库学习】使用itk库进行图像滤波ImageFilter:模糊降噪

2023-12-12 21:36

本文主要是介绍【ITK库学习】使用itk库进行图像滤波ImageFilter:模糊降噪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1、itkDiscreteGaussianImageFilter 离散高斯
  • 2、itkBinomialBlurImageFilter 二项式模糊
  • 3、itkSmoothingRecursiveGaussianImageFilter

图像模糊可以削弱图像频谱的高频部门

1、itkDiscreteGaussianImageFilter 离散高斯

该类通过图像与离散高斯算子(内核)的可分离卷积来模糊图像。

如果 SetUseImageSpacing 关闭(false),则方差或标准差 (sigma) 将被评估为像素单位;如果 SetUseImageSpacing 开启(true,默认值),则方差或标准差 (sigma) 将被评估为物理单位。 方差可以在每个维度上独立设置。

常用的成员函数

  • Set/GetSigma():设置用于平滑的高斯的标准差,Sigma以图像间距为单位进行测量
  • Set/GetSigmaArray():保留 SetSigmaArray 以实现接口向后兼容性
  • SetVariance():离散高斯核的方差,为每个维度独立设置方差,每个维度的默认值为 0.0,如果 UseImageSpacing为 true,则单位是图像的物理单位,如果 UseImageSpacing 为 false,则单位为像素
  • Set/GetUseImageSpacing():设置/获取过滤器是否在计算中使用输入图像的间距,参数为bool,true(On):考虑图像间距信息并指定现实世界单位中的高斯方差;false(Off):忽略图像间距并以体素单位指定高斯方差,默认为On
  • SetUseImageSpacingOn/Off():同上
  • Set/GetMaximumKernelWidth():设置内核最大宽度像素值,即使MaximumError需要,默认值为 32 像素
  • Set/GetMaximumError():调整离散内核的大小,以便内核截断产生的误差不大于 MaximumError, 每个维度的默认值为 0.01
  • Set/GetInputBoundaryCondition():设置/获取边界条件
  • Set/GetRealBoundaryCondition():设置/获取边界条件
  • Set/GetFilterDimensionality():设置平滑维度数,默认为图像维度,可以设置为小于图像Dimension,平滑所有小于FilterDimensionality的尺寸,例如,只需平滑3D数据的切片而不在 Z 轴上平滑,则将 FilterDimensionality 设置为 2
  • GetKernelRadius():获取每个方向上可分离核的半径
  • GetKernelSize():获取每个方向上可分离核的大小,公式:KernelSize[i] = KernelRadius[i] * 2 + 1
  • GetKernelVarianceArray():获取方差,可选择根据像素间距进行调整

示例代码

#include "itkImage.h"
#include "itkDiscreteGaussianImageFilter.h"typedef itk::Image<float, 3> FloatImageType;bool discreteGaussianImageFilter(FloatImageType* image, FloatImageType* outputImage)
{const double gaussianVariance = 2.0;const int maxKernelWidth = 32;typedef itk::DiscreteGaussianImageFilter<FloatImageType, FloatImageType> DiscreteGaussianFilterType;typename DiscreteGaussianFilterType::Pointer discreteGauFilter = DiscreteGaussianFilterType::New();discreteGauFilter->SetInput(image);discreteGauFilter->SetVariance(gaussianVariance);discreteGauFilter->SetMaximumKernelWidth(32);discreteGauFilter->SetUseImageSpacing(true);try{discreteGauFilter->Update();}catch (itk::ExceptionObject& ex){//读取过程发生错误std::cerr << "Error: " << ex << std::endl;return false;}outputImage = discreteGauFilter->GetOutput();return true;
}

itkDiscreteGaussianImageFilter和itkRecursiveGaussianImageFilter都是都是用于图像滤波的高斯滤波器。

相同之处:在于都可以通过设置标准差参数来控制滤波的效果。

不同之处:

  • itkDiscreteGaussianImageFilter:是通过离散卷积的方式来计算高斯滤波,使用离散的高斯核进行像素值的加权平均,在实现上是基于卷积操作的,基于卷积的方法可以保留图像中的边缘信息,并且滤波时不会引入额外的图像数据依赖,其结果近似于连续高斯滤波,该类需要进行完整的离散卷积计算,计算成本较高,可以通过设置像素距离和变换到频率域等参数来调整滤波器的行为
  • itkRecursiveGaussianImageFilter使用递归的高斯核进行滤波,将二维高斯滤波分解成一维高斯滤波的连续求和,从而实现递归滤波的方法,由于它可以在空间域上利用中间结果进行优化,递归滤波的方法可以有效地减少计算量,并且在处理大图像时具有更高的效率,然而,递归滤波方法在滤波过程中会引入额外的图像数据依赖,因此可能会导致边界像素的变化,主要通过设置标准差来控制高斯核的大小和强度。

2、itkBinomialBlurImageFilter 二项式模糊

该类可以对图像的每个维度执行可分离的模糊。

二项式模糊由每个图像维度上的最近邻平均值组成,沿每个维度来计算一个最接近的邻域平均,理论上,经过n 次迭代后的最终结果接近高斯卷积。

常用的成员函数

  • Set/GetRepetitions():设置/获取重复过滤的次数

示例代码

#include "itkImage.h"
#include "itkBinomialBlurImageFilter.h"typedef itk::Image<float, 3> FloatImageType;bool binomialBlurImageFilter(FloatImageType* image, FloatImageType* outputImage, int repetitions)
{typedef itk::BinomialBlurImageFilter<FloatImageType, FloatImageType> BinomialBlurFilterType;typename BinomialBlurFilterType::Pointer binmialBlurFilter = BinomialBlurFilterType::New();binmialBlurFilter->SetInput(image);binmialBlurFilter->SetRepetitions(repetitions);try{binmialBlurFilter->Update();}catch (itk::ExceptionObject& ex){//读取过程发生错误std::cerr << "Error: " << ex << std::endl;return false;}outputImage = binmialBlurFilter->GetOutput();return true;
}

3、itkSmoothingRecursiveGaussianImageFilter

该类通过与实现为IIR滤波器的高斯核进行卷积来计算图像的平滑度。

该滤波器是使用递归高斯滤波器实现的,对于多分量图像,过滤器独立地作用于每个分量。

常用的成员函数

  • Set/GetSigma():设置/获取用于平滑的高斯的标准差,Sigma以图像间距为单位进行测量,可以使用 SetSigma方法在每个轴上设置相同的值,或者如果需要沿每个轴使用不同的值,则可以使用 SetSigmaArray
  • Set/GetSigmaArray():设置/获取每个轴向的Sigma值
  • Set/GetNumberOfWorkUnits():设置/获取要创建的工作单元的数量
  • Set/GetNormalizeAcrossScale():设置/获取用于在尺度空间上标准化高斯的标志,此方法不会影响该过滤器的输出
  • NormalizeAcrossScaleOn/Off():同上

示例代码

#include "itkImage.h"
#include "itkSmoothingRecursiveGaussianImageFilter.h"typedef itk::Image<float, 3> FloatImageType;bool smoothingRecursiveGaussianImageFilter(FloatImageType* image, FloatImageType* outputImage, double sigma)
{typedef itk::SmoothingRecursiveGaussianImageFilter<FloatImageType, FloatImageType> SmoothingRecGauFilterType;typename SmoothingRecGauFilterType::Pointer smoothingFilter = SmoothingRecGauFilterType::New();smoothingFilter->SetInput(image);smoothingFilter->SetSigma(sigma);//const itk::FixedArray<double, 3U> sigmaArry;//smoothingFilter->SetSigmaArray(sigmaArry);try{smoothingFilter->Update();}catch (itk::ExceptionObject& ex){//读取过程发生错误std::cerr << "Error: " << ex << std::endl;return false;}outputImage = smoothingFilter->GetOutput();return true;
}

此类与itkRecursiveGaussianImageFilter滤波器相比,它们都是用于对图像进行高斯平滑处理的滤波器,区别在于实现方式。

  • itkRecursiveGaussianImageFilter滤波器是使用递归的方式计算高斯卷积,通过将二维高斯核分解为一维核进行计算,可以有效地减少计算量和内存使用,递归高斯滤波器具有线性计算复杂度,适用于平滑大尺寸图像。

  • itkSmoothingRecursiveGaussianImageFilter滤波器是基于itkRecursiveGaussianImageFilter滤波器进行改进的,主要是在高斯平滑的过程中引入了一个缩放因子,用于控制滤波器的平滑程度,可以灵活地调节滤波器的参数,使得滤波结果更符合需求。

因此,itkSmoothingRecursiveGaussianImageFilter滤波器相对于itkRecursiveGaussianImageFilter滤波器而言,更加灵活,可以得到更多种类的平滑结果。

这篇关于【ITK库学习】使用itk库进行图像滤波ImageFilter:模糊降噪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/486011

相关文章

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停