本文主要是介绍AirFlow容器部署和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、如何制作AirFlow容器
1、安装docker环境
基于centos环境下进行部署,建议在centos6或者centos7的环境下1.1、下载docker安装包
下载地址:https://download.docker.com/linux/static/stable/x86_64/
推荐使用的版本是18.09.61.2、下载到本地后解压
tar -zxf docker-18.09.6.tgz1.3、将解压出来的docker文件内容移动到 /usr/bin/ 目录下
cp docker/* /usr/bin/1.4、将docker注册为service
新建文件
vim /etc/systemd/system/docker.service并添加以下内容
[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network-online.target firewalld.service
Wants=network-online.target[Service]
Type=notify
# the default is not to use systemd for cgroups because the delegate issues still
# exists and systemd currently does not support the cgroup feature set required
# for containers run by docker
ExecStart=/usr/bin/dockerd
ExecReload=/bin/kill -s HUP $MAINPID
# Having non-zero Limit*s causes performance problems due to accounting overhead
# in the kernel. We recommend using cgroups to do container-local accounting.
LimitNOFILE=infinity
LimitNPROC=infinity
LimitCORE=infinity
# Uncomment TasksMax if your systemd version supports it.
# Only systemd 226 and above support this version.
#TasksMax=infinity
TimeoutStartSec=0
# set delegate yes so that systemd does not reset the cgroups of docker containers
Delegate=yes
# kill only the docker process, not all processes in the cgroup
KillMode=process
# restart the docker process if it exits prematurely
Restart=on-failure
StartLimitBurst=3
StartLimitInterval=60s[Install]
WantedBy=multi-user.target添加文件权限
chmod +x /etc/systemd/system/docker.service
systemctl daemon-reload1.5、启动docker
systemctl start docker1.6、验证
systemctl status docker #查看Docker状态
docker -v #查看Docker版本
2. 在Docker环境安装AirFlow2.1、下载源码到/root/airflow文件夹
git clone https://github.com/puckel/docker-airflow.git /root/airflow 2.2、运行容器
运行容器命令:
docker run --net=bridge --name AirFlow-e MYSQL_IP_PORT="172.16.117.125:3306/airflow" -e MYSQL_USERNAME="root" -e MYSQL_PASSWORD="123456" -v /usr/local/airflow/dags:/usr/local/airflow/dags -v /usr/local/airflow/airflowSql:/usr/local/airflow/airflowSql -v /usr/local/airflow/airflow.cfg:/usr/local/airflow/airflow.cfg -id -p 8081:8080 --privileged=true puckel/docker-airflow解释:
AirFlow:容器的名称
MYSQL_IP_PORT:mysql数据库的ip地址:端口号/数据库名称
MYSQL_USERNAME:登录mysql数据库的用户名
MYSQL_PASSWORD:登录mysql的密码-v /usr/local/airflow/dags:/usr/local/airflow/dags
宿主机的存放dag文件目录:容器存放dag文件目录-v /usr/local/airflow/airflowSql:/usr/local/airflow/airflowSql
宿主机的存放执行脚本文件目录:容器存放执行脚本文件目录-v /usr/local/airflow/airflow.cfg:/usr/local/airflow/airflow.cfg
将airflow的配置文件映射到宿主机puckel/docker-airflow 镜像名称2.3、进入容器
docker exec -it -u root AirFlow bash
/*
默认是进入到容器的/usr/local/airflow目录下(airflow的默认安装目录)
*/2.4、修改配置文件
vim airflow.cfgdags_folder =$AIRFLOW_HOME/dags #DAG文件存放的目录base_log_folder = $AIRFLOW_HOME/logs #运行日志存放目录executor = LocalExecutorsql_alchemy_conn = mysql://$MYSQL_USERNAME:$MYSQL_PASSWORD@$MYSQL_IP_PORTload_examples = Falsedags_are_paused_at_creation = False2.5、初始化数据库
airflow initdb 如果初始化出现这样的错误:airflow.exceptions.AirflowException: Could not create Fernet object: Incorrect padding解决办法:python -c "from cryptography.fernet import Fernet;print(Fernet.generate_key().decode())"export AIRFLOW__CORE__FERNET_KEY=oNu9XwewQNyx9mAJT2vZvtm3qzPRZIWRqwk9hSVch4A=airflow initdb // 重新运行初始化数据库2.6、后台运行
后台运行服务webserver和scheduler
nohup airflow webserver>>$AIRFLOW_HOME/airflow-webserver.log 2>&1 &后台运行调度
nohup airflow scheduler>>$AIRFLOW_HOME/airflow-scheduler.log 2>&1 &2.7、在浏览器打开地址: 172.16.117.125:8081
二、如何将部署好的AirFlow容器迁移到其他服务器
/*
在容器迁移之前,先给容器安装几个常用的命令,考虑到目标服务器可能不能联网
*/1、安装 vim ping ifconfig 等常用命令apt-get updateapt-get install vim //安装vimapt-get install net-tools //安装ifconfigapt-get install iputils-ping //安装ping2、将配置好的airflow容器制作成镜像docker commit 0e3d77afccc3 airflow/*docker commit 容器ID 镜像名称*/3、将镜像保存为一个文件包docker save -o airflow.tar airflow4、将该文件包拷贝到需要迁移的服务器上5、在新的服务器上把文件包加载成镜像docker load -i airflow.tar6、通过新导入的镜像来启动容器
docker run --net=bridge --name AirFlow --hostname airflow
-e MYSQL_IP_PORT="172.16.117.125:3306/airflow"-e MYSQL_USERNAME="root" -e MYSQL_PASSWORD="123456" -v /usr/local/airflow/dags:/usr/local/airflow/dags -v /usr/local/airflow/airflowSql:/usr/local/airflow/airflowSql -v /usr/local/airflow/airflow.cfg:/usr/local/airflow/airflow.cfg -id -p 8084:8080 --privileged=true airflow解释:
AirFlow:容器的名称
MYSQL_IP_PORT:mysql数据库的ip地址:端口号/数据库名称
MYSQL_USERNAME:登录mysql数据库的用户名
MYSQL_PASSWORD:登录mysql的密码-v /usr/local/airflow/dags:/usr/local/airflow/dags
宿主机的存放dag文件目录:容器存放dag文件目录-v /usr/local/airflow/airflowSql:/usr/local/airflow/airflowSql
宿主机的存放执行脚本文件目录:容器存放执行脚本文件目录-v /usr/local/airflow/airflow.cfg:/usr/local/airflow/airflow.cfg
将airflow的配置文件映射到宿主机airflow 镜像名称7、进入容器
docker exec -it -u root AirFlow bash
/*
默认是进入到容器的/usr/local/airflow目录下(airflow的默认安装目录)
*/8、修改配置文件
vim airflow.cfgdags_folder =$AIRFLOW_HOME/dags #DAG文件存放的目录base_log_folder = $AIRFLOW_HOME/logs #运行日志存放目录executor = LocalExecutorsql_alchemy_conn = mysql://$MYSQL_USERNAME:$MYSQL_PASSWORD@$MYSQL_IP_PORTload_examples = Falsedags_are_paused_at_creation = False9、初始化数据库
airflow initdb 如果初始化出现这样的错误:airflow.exceptions.AirflowException: Could not create Fernet object: Incorrect padding解决办法:python -c "from cryptography.fernet import Fernet;print(Fernet.generate_key().decode())"export AIRFLOW__CORE__FERNET_KEY=oNu9XwewQNyx9mAJT2vZvtm3qzPRZIWRqwk9hSVch4A=airflow initdb // 重新运行初始化数据库10、后台运行
后台运行服务webserver和scheduler
nohup airflow webserver>>$AIRFLOW_HOME/airflow-webserver.log 2>&1 &后台运行调度
nohup airflow scheduler>>$AIRFLOW_HOME/airflow-scheduler.log 2>&1 &11、在浏览器打开地址: 172.16.117.125:8084
/*
新的服务器ip地址:对应服务器的端口号(我这里是8084)
*/
三、如何使用AirFlow容器
1、将dag任务文件放到/usr/local/airflow/dags目录下(这个根据前面的配置来定)2、调度任务在airflow所在服务器的模板import airflow
import time
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator
from datetime import datetime,timedeltadefault_args = {'owner': 'airflow','depends_on_past': False,'start_date': datetime(2019, 12, 17,17,12,1),'retries': 5,'retry_delay': timedelta(seconds=5),
}dag = DAG('c_test', default_args=default_args,description='my second DAG',schedule_interval=timedelta(minutes=1))filename1='/usr/local/airflow/test/a1.txt'
filename2='/usr/local/airflow/test/a2.txt'
filename3='/usr/local/airflow/test/a3.txt'def print_hello1():print("Hello World!1111111")current_time = time.asctime( time.localtime(time.time()) )with open(filename1,'a') as f:f.write(current_time)def print_hello2():print("Hello World!22222222")current_time = time.asctime( time.localtime(time.time()) )with open(filename2,'a') as f:f.write(current_time)def print_hello3():print("Hello World!33333333")current_time = time.asctime( time.localtime(time.time()) )with open(filename3,'a') as f:f.write(current_time)task1 = PythonOperator(task_id='task_1',python_callable=print_hello1,dag=dag)task2 = PythonOperator(task_id='task_2',python_callable=print_hello2,dag=dag)task3 = PythonOperator(task_id='task_3',python_callable=print_hello3,dag=dag)task2.set_upstream(task1)
task3.set_upstream(task1)3、调度任务在远程服务器模板from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators import ExternalTaskSensor
from airflow.operators import EmailOperator
from datetime import datetime, timedelta
from airflow.contrib.hooks.ssh_hook import SSHHook
from airflow.contrib.operators.ssh_operator import SSHOperator
sshHook = SSHHook(remote_host='172.16.117.126',username='root',password='GXcxkfbrgx@26',timeout=30)
default_args = {'owner': 'airflow','depends_on_past': False,'start_date': datetime(2019, 12, 27,10,22,0),'retries': 3,'retryDelay': timedelta(seconds=5),'end_date': datetime(9999, 12, 31)
}dag = DAG('hello',default_args=default_args,schedule_interval='0 * * * *')hello = SSHOperator(ssh_hook=sshHook,task_id='hello',dag=dag,command='/opt/sh/hello.sh '
)
hello/*
sshHook = SSHHook(remote_host='172.16.117.126',username='root',password='GXcxkfbrgx@26',timeout=30)
sshHook = SSHHook(remote_host='远程服务器ip地址',username='用户名',password='密码',timeout=30)
*/
这篇关于AirFlow容器部署和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!