本文主要是介绍学习笔记 --- LINUX MTD子系统框架分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
MTD(memory technology device):内存技术设备,是linux用于描述ROM,NAND,NOR等设备的子系统的抽象,MTD设备可以按块读写也可以按字节读写,也就是说MTD设备既可以是块设备也可以是字符设备,块设备(mtdblackx)操作针对文件系统,字符设备(mtdx)操作主要针对格式化等操作的测试用。
一个MTD设备的描述为mtd_info这个结构体,填充好这个结构体,然后调用add_mtd_device添加mtd设备函数就可以注册MTD设备了。在内核的源代码中,mtdram.c是一个很简单的例子,他把一块内存空间模拟了一个MTD device,研究MTD的框架,从这个mtdram.c开始:
/** mtdram - a test mtd device* Author: Alexander Larsson <alex@cendio.se>** Copyright (c) 1999 Alexander Larsson <alex@cendio.se>* Copyright (c) 2005 Joern Engel <joern@wh.fh-wedel.de>** This code is GPL**/#include <linux/module.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/mtd/compatmac.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/mtdram.h>static unsigned long total_size = CONFIG_MTDRAM_TOTAL_SIZE;
static unsigned long erase_size = CONFIG_MTDRAM_ERASE_SIZE;
#define MTDRAM_TOTAL_SIZE (total_size * 1024)
#define MTDRAM_ERASE_SIZE (erase_size * 1024)#ifdef MODULE
module_param(total_size, ulong, 0);
MODULE_PARM_DESC(total_size, "Total device size in KiB");
module_param(erase_size, ulong, 0);
MODULE_PARM_DESC(erase_size, "Device erase block size in KiB");
#endif// We could store these in the mtd structure, but we only support 1 device..
static struct mtd_info *mtd_info;static int ram_erase(struct mtd_info *mtd, struct erase_info *instr)
{if (instr->addr + instr->len > mtd->size)return -EINVAL;memset((char *)mtd->priv + instr->addr, 0xff, instr->len);instr->state = MTD_ERASE_DONE;mtd_erase_callback(instr);return 0;
}static int ram_point(struct mtd_info *mtd, loff_t from, size_t len,size_t *retlen, void **virt, resource_size_t *phys)
{if (from + len > mtd->size)return -EINVAL;/* can we return a physical address with this driver? */if (phys)return -EINVAL;*virt = mtd->priv + from;*retlen = len;return 0;
}static void ram_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
}/** Allow NOMMU mmap() to directly map the device (if not NULL)* - return the address to which the offset maps* - return -ENOSYS to indicate refusal to do the mapping*/
static unsigned long ram_get_unmapped_area(struct mtd_info *mtd,unsigned long len,unsigned long offset,unsigned long flags)
{return (unsigned long) mtd->priv + offset;
}static int ram_read(struct mtd_info *mtd, loff_t from, size_t len,size_t *retlen, u_char *buf)
{if (from + len > mtd->size)return -EINVAL;memcpy(buf, mtd->priv + from, len);*retlen = len;return 0;
}static int ram_write(struct mtd_info *mtd, loff_t to, size_t len,size_t *retlen, const u_char *buf)
{if (to + len > mtd->size)return -EINVAL;memcpy((char *)mtd->priv + to, buf, len);*retlen = len;return 0;
}static void __exit cleanup_mtdram(void)
{if (mtd_info) {del_mtd_device(mtd_info);vfree(mtd_info->priv);kfree(mtd_info);}
}int mtdram_init_device(struct mtd_info *mtd, void *mapped_address,unsigned long size, char *name)
{memset(mtd, 0, sizeof(*mtd));/* Setup the MTD structure */mtd->name = name;mtd->type = MTD_RAM;mtd->flags = MTD_CAP_RAM;mtd->size = size;mtd->writesize = 1;mtd->erasesize = MTDRAM_ERASE_SIZE;mtd->priv = mapped_address;mtd->owner = THIS_MODULE;mtd->erase = ram_erase;mtd->point = ram_point;mtd->unpoint = ram_unpoint;mtd->get_unmapped_area = ram_get_unmapped_area;mtd->read = ram_read;mtd->write = ram_write;if (add_mtd_device(mtd)) { //填充好mtd_info之后注册这个mtd设备return -EIO;}return 0;
}static int __init init_mtdram(void)
{void *addr;int err;if (!total_size)return -EINVAL;/* Allocate some memory */mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL); //分配mtd_infoif (!mtd_info)return -ENOMEM;addr = vmalloc(MTDRAM_TOTAL_SIZE); //开辟一段内存用来模拟MTD设备if (!addr) {kfree(mtd_info);mtd_info = NULL;return -ENOMEM;}err = mtdram_init_device(mtd_info, addr, MTDRAM_TOTAL_SIZE, "mtdram test device"); if (err) {vfree(addr);kfree(mtd_info);mtd_info = NULL;return err;}memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE);return err;
}module_init(init_mtdram);
module_exit(cleanup_mtdram);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alexander Larsson <alexl@redhat.com>");
MODULE_DESCRIPTION("Simulated MTD driver for testing");
这是一个很简单的mtd设备驱动,以一块ram来模拟一个mtd设备,从上面代码可以看到,一个mtd设备的注册就是先填充好一个mtd_info,这个结构体提供设备的硬件信息以及读写擦除等操作方法。注册这个结构体就完成了一个mtd设备的添加。这里对应的是ram设备,读写是直接操作内存的,如果是nandflash和norflash设备,对读写擦除等操作函数比较复杂,但是最终mtd的设备都要调用add_mtd_device这个函数来注册,下面来分析到底这个函数做了什么来注册一个mtd设备的:
int add_mtd_device(struct mtd_info *mtd)
{int i;if (!mtd->backing_dev_info) {switch (mtd->type) {case MTD_RAM:mtd->backing_dev_info = &mtd_bdi_rw_mappable;break;case MTD_ROM: mtd->backing_dev_info = &mtd_bdi_ro_mappable;break;default:mtd->backing_dev_info = &mtd_bdi_unmappable;break;}}BUG_ON(mtd->writesize == 0);mutex_lock(&mtd_table_mutex);for (i=0; i < MAX_MTD_DEVICES; i++)if (!mtd_table[i]) {struct mtd_notifier *not;mtd_table[i] = mtd;mtd->index = i;mtd->usecount = 0;if (is_power_of_2(mtd->erasesize))mtd->erasesize_shift = ffs(mtd->erasesize) - 1;elsemtd->erasesize_shift = 0;if (is_power_of_2(mtd->writesize))mtd->writesize_shift = ffs(mtd->writesize) - 1;elsemtd->writesize_shift = 0;mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;/* Some chips always power up locked. Unlock them now */if ((mtd->flags & MTD_WRITEABLE)&& (mtd->flags & MTD_POWERUP_LOCK) && mtd->unlock) {if (mtd->unlock(mtd, 0, mtd->size))printk(KERN_WARNING"%s: unlock failed, ""writes may not work\n",mtd->name);}/* Caller should have set dev.parent to match the* physical device.*/mtd->dev.type = &mtd_devtype;mtd->dev.class = &mtd_class;mtd->dev.devt = MTD_DEVT(i);dev_set_name(&mtd->dev, "mtd%d", i); //设置mtd设备名称dev_set_drvdata(&mtd->dev, mtd);if (device_register(&mtd->dev) != 0) { //注册mtd设备(会自动创建mtd设备可读写的节点)mtd_table[i] = NULL;break;}if (MTD_DEVT(i))device_create(&mtd_class, mtd->dev.parent, //创建mtd设备只读的节点MTD_DEVT(i) + 1,NULL, "mtd%dro", i); DEBUG(0, "mtd: Giving out device %d to %s\n",i, mtd->name);/* No need to get a refcount on the module containingthe notifier, since we hold the mtd_table_mutex */list_for_each_entry(not, &mtd_notifiers, list) not->add(mtd); //把这个mtd device注册到mtdmutex_unlock(&mtd_table_mutex);/* We _know_ we aren't being removed, becauseour caller is still holding us here. So noneof this try_ nonsense, and no bitching about iteither. :) */__module_get(THIS_MODULE);return 0;}mutex_unlock(&mtd_table_mutex);return 1;
}
可以看出注册device的时候,需要调用mtd_notifiers链表里面的add函数,这个函数指针在哪里被添加进去的?
void register_mtd_user (struct mtd_notifier *new)
{int i;mutex_lock(&mtd_table_mutex);list_add(&new->list, &mtd_notifiers); //new添加到mtd_notifiers链表__module_get(THIS_MODULE);for (i=0; i< MAX_MTD_DEVICES; i++)if (mtd_table[i])new->add(mtd_table[i]);mutex_unlock(&mtd_table_mutex);
}
那么register_mtd_user是谁调用的?查看代码可以知道在mtdchar.c与mtdblock.c以及mtdblock_ro.c里面注册MTD字符设备与MTD块设备的时候调用的,所以可以知道这个链表放的就是支持mtd设备的所有驱动,都放在这个链表里面,在执行add_mtd_device里面的
list_for_each_entry(not, &mtd_notifiers, list) not->add(mtd);
的时候,一个for循环调用不同驱动(字符,块,只读块驱动)的add函数来添加这个device到不同的驱动。这里以块设备驱动为例,如果添加到块驱动,那么:
static struct mtd_notifier blktrans_notifier = {.add = blktrans_notify_add,.remove = blktrans_notify_remove,
};
调用add就是调用:
static void blktrans_notify_add(struct mtd_info *mtd)
{struct mtd_blktrans_ops *tr;if (mtd->type == MTD_ABSENT)return;list_for_each_entry(tr, &blktrans_majors, list)tr->add_mtd(tr, mtd);
}
可以知道执行blktrans_majors链表里面的add_mtd,这个链表的元素通过下面函数添加进去:
int register_mtd_blktrans(struct mtd_blktrans_ops *tr)
{int ret, i;/* Register the notifier if/when the first device type isregistered, to prevent the link/init ordering from fuckingus over. */if (!blktrans_notifier.list.next)register_mtd_user(&blktrans_notifier);tr->blkcore_priv = kzalloc(sizeof(*tr->blkcore_priv), GFP_KERNEL);if (!tr->blkcore_priv)return -ENOMEM;mutex_lock(&mtd_table_mutex);ret = register_blkdev(tr->major, tr->name);if (ret) {printk(KERN_WARNING "Unable to register %s block device on major %d: %d\n",tr->name, tr->major, ret);kfree(tr->blkcore_priv);mutex_unlock(&mtd_table_mutex);return ret;}spin_lock_init(&tr->blkcore_priv->queue_lock);tr->blkcore_priv->rq = blk_init_queue(mtd_blktrans_request, &tr->blkcore_priv->queue_lock);if (!tr->blkcore_priv->rq) {unregister_blkdev(tr->major, tr->name);kfree(tr->blkcore_priv);mutex_unlock(&mtd_table_mutex);return -ENOMEM;}tr->blkcore_priv->rq->queuedata = tr;blk_queue_logical_block_size(tr->blkcore_priv->rq, tr->blksize);if (tr->discard)queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,tr->blkcore_priv->rq);tr->blkshift = ffs(tr->blksize) - 1;tr->blkcore_priv->thread = kthread_run(mtd_blktrans_thread, tr,"%sd", tr->name);if (IS_ERR(tr->blkcore_priv->thread)) {int ret = PTR_ERR(tr->blkcore_priv->thread);blk_cleanup_queue(tr->blkcore_priv->rq);unregister_blkdev(tr->major, tr->name);kfree(tr->blkcore_priv);mutex_unlock(&mtd_table_mutex);return ret;}INIT_LIST_HEAD(&tr->devs);list_add(&tr->list, &blktrans_majors); //添加这个块驱动到链表for (i=0; i<MAX_MTD_DEVICES; i++) { //注册块驱动的时候添加所有mtd的块设备if (mtd_table[i] && mtd_table[i]->type != MTD_ABSENT)tr->add_mtd(tr, mtd_table[i]);}mutex_unlock(&mtd_table_mutex);return 0;
}
这个函数就是注册一个块驱动,然后添加所有mtd的块设备。所以最终的核心就是add_mtd这个,他在mtd块设备里面是mtdblock_add_mtd函数,这个函数最终会调用下面函数来添加一个MTD块设备:
int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new)
{struct mtd_blktrans_ops *tr = new->tr;struct mtd_blktrans_dev *d;int last_devnum = -1;struct gendisk *gd;if (mutex_trylock(&mtd_table_mutex)) {mutex_unlock(&mtd_table_mutex);BUG();}list_for_each_entry(d, &tr->devs, list) {if (new->devnum == -1) {/* Use first free number */if (d->devnum != last_devnum+1) {/* Found a free devnum. Plug it in here */new->devnum = last_devnum+1;list_add_tail(&new->list, &d->list);goto added;}} else if (d->devnum == new->devnum) {/* Required number taken */return -EBUSY;} else if (d->devnum > new->devnum) {/* Required number was free */list_add_tail(&new->list, &d->list);goto added;}last_devnum = d->devnum;}if (new->devnum == -1)new->devnum = last_devnum+1;if ((new->devnum << tr->part_bits) > 256) {return -EBUSY;}list_add_tail(&new->list, &tr->devs);added:mutex_init(&new->lock);if (!tr->writesect)new->readonly = 1;gd = alloc_disk(1 << tr->part_bits); //分配diskif (!gd) {list_del(&new->list);return -ENOMEM;}gd->major = tr->major;gd->first_minor = (new->devnum) << tr->part_bits;gd->fops = &mtd_blktrans_ops;if (tr->part_bits)if (new->devnum < 26)snprintf(gd->disk_name, sizeof(gd->disk_name),"%s%c", tr->name, 'a' + new->devnum);elsesnprintf(gd->disk_name, sizeof(gd->disk_name),"%s%c%c", tr->name,'a' - 1 + new->devnum / 26,'a' + new->devnum % 26);elsesnprintf(gd->disk_name, sizeof(gd->disk_name),"%s%d", tr->name, new->devnum);/* 2.5 has capacity in units of 512 bytes while stillhaving BLOCK_SIZE_BITS set to 10. Just to keep us amused. */set_capacity(gd, (new->size * tr->blksize) >> 9);gd->private_data = new;new->blkcore_priv = gd;gd->queue = tr->blkcore_priv->rq;gd->driverfs_dev = &new->mtd->dev;if (new->readonly)set_disk_ro(gd, 1);add_disk(gd); //添加diskreturn 0;
}
alloc_disk与add_disk这在之前分析块设备驱动框架的时候已经分析了,这两个就是注册块设备的基本函数。而如果是mtd字符设备,就会调用字符设备的添加函数,所以add_mtd_device这个函数就是这样来添加mtd设备的。
mtd设备驱动由块设备,字符设备,只读块设备等类型:
MTD块driver(针对文件系统):
static struct mtd_blktrans_ops mtdblock_tr = {.name = "mtdblock",.major = 31,.part_bits = 0,.blksize = 512,.open = mtdblock_open,.flush = mtdblock_flush,.release = mtdblock_release,.readsect = mtdblock_readsect,.writesect = mtdblock_writesect,.add_mtd = mtdblock_add_mtd,.remove_dev = mtdblock_remove_dev,.owner = THIS_MODULE,
};static int __init init_mtdblock(void)
{mutex_init(&mtdblks_lock);return register_mtd_blktrans(&mtdblock_tr);
}static void __exit cleanup_mtdblock(void)
{deregister_mtd_blktrans(&mtdblock_tr);
}module_init(init_mtdblock);
module_exit(cleanup_mtdblock);
MTD字符driver(支持块设备像字符设备那样去操作,一般用作测试)
static int __init init_mtdchar(void)
{int ret;ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,"mtd", &mtd_fops); //注册字符设备,捆绑mtd_fopsif (ret < 0) {pr_notice("Can't allocate major number %d for Memory Technology Devices.\n", MTD_CHAR_MAJOR);return ret;}ret = register_filesystem(&mtd_inodefs_type); //注册mtd_inodefs_type文件系统if (ret) {pr_notice("Can't register mtd_inodefs filesystem: %d\n", ret);goto err_unregister_chdev;}mtd_inode_mnt = kern_mount(&mtd_inodefs_type); //挂载mtd_inodefs_type文件系统if (IS_ERR(mtd_inode_mnt)) {ret = PTR_ERR(mtd_inode_mnt);pr_notice("Error mounting mtd_inodefs filesystem: %d\n", ret);goto err_unregister_filesystem;}register_mtd_user(&mtdchar_notifier); //注册到链表return ret;
err_unregister_filesystem:unregister_filesystem(&mtd_inodefs_type);
err_unregister_chdev:__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");return ret;
}
MTD的框架跟输入子系统一样类似的分离框架,一边注册驱动(driver),一边注册设备(device),驱动有字符,块,只读块,系统开机会注册mtd设备的驱动同时添加已注册的设备。
MTD驱动端:这里可以注册mtd的字符与块设备,只读块驱动,分别对应内核代码的mtdblock.c与mtdchar.c还有只读的mtdblock_ro.c
MTD设备端:调用add_mtd_device注册设备
这篇关于学习笔记 --- LINUX MTD子系统框架分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!