【论文阅读笔记】NeRF+Mip-NeRF+Instant-NGP

2023-12-11 06:01

本文主要是介绍【论文阅读笔记】NeRF+Mip-NeRF+Instant-NGP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • NeRF
    • 神经辐射场
    • 体渲染
      • 连续体渲染
      • 体渲染离散化
    • 方法
      • 位置编码
      • 分层采样
      • 体渲染推导公式(1)到公式(2)
      • 部分代码解读
        • 相机变换(重要!)
  • Mip-Nerf
    • To do
  • Instant-NGP
    • To do

前言

NeRF是NeRF系列的开山之作,将三维场景隐式的表达为神经网络的权重用于新视角合成
MipNeRF和Instant NGP分别代表了NeRF的两个研究方向,前者是抗锯齿,代表着渲染质量提升方向;后者是采用多分辨率哈希表用于加速NeRF的训练与推理速度。

通过NeRF实现新视角合成

NeRF

Title:NeRF: Representing Scenes asNeural Radiance Fields for View Synthesis
Code:nerf-pytorch
From:ECCV 2020 Oral - Best Paper Honorable Mention

神经辐射场

在这里插入图片描述
辐射场可以理解光线场,给定多张带有相机内外参的二维图片,从摄像机出发,引出到每一个像素的光线,通过对这条光线经历过的空间点的颜色 c c c和体密度体密度 σ \sigma σ进行累积,以得到二维图片上像素点的颜色,从而实现端到端训练。在这个过程中,没有显式的三维结构,如点云、体素或者Mesh,而是通过神经网络的权重 F θ F_{\theta} Fθ将三维场景连续的存储起来,通过空间位置(三维点 [ x , y , z ] [x,y,z] [x,y,z])和视角方向(球坐标系下的极角和方位角 [ θ , ϕ ] [\theta,\phi] [θ,ϕ])作为查询条件,查询出给定摄像机下的光线所经过的空间点颜色 c c c和体密度 σ \sigma σ,通过**体渲染(Volume Rendering)**得到该条光线对应像素点的颜色。

体渲染

P为三维空间中的一个点;o是摄像机的光心在世界坐标系的坐标;d为视角方向,单位向量;t为实数,表示o沿视角方向到P点的距离r(t);t n ≤ t ≤ t f ; t f,t f 分别为三维场景的近和远边界

沿着视角方向的光线上的点P可以用上图来表示,尽管论文中提到视角方向是使用 θ , ϕ \theta,\phi θ,ϕ来表示的,但代码中还是使用单位向量 d d d来表示的

连续体渲染

体渲染实际上就是将视线r上所有的点通过某种方式累计投射到图像上形成像素颜色 C ( r ) C(r) C(r)的过程:
C ( r ) = ∫ t n t f T ( t ) σ ( r ( t ) ) c ( r ( t ) , d ) d t where  T ( t ) = exp ⁡ ( − ∫ t n t σ ( r ( s ) ) d s ) (1) {C}(\boldsymbol{r})=\int_{t_n}^{t_f} T(t) \sigma(\boldsymbol{r}(t)) \boldsymbol{c}(\boldsymbol{r}(t), \boldsymbol{d}) dt \\ \text{where } T(t)=\exp \left(-\int_{t_n}^t \sigma(\boldsymbol{r}(s)) d s\right)\tag{1} C(r)=tntfT(t)σ(r(t))c(r(t),d)dtwhere T(t)=exp(tntσ(r(s))ds)(1)

其中, c ( r ( t ) , d ) \boldsymbol{c}(\boldsymbol{r}(t), \boldsymbol{d}) c(r(t),d)为三维点 r ( t ) r(t) r(t) d d d这个方向看到的颜色值; σ ( r ( t ) ) \sigma(\boldsymbol{r}(t)) σ(r(t))为体密度函数,反映的是该三维点的物理材质吸收光线的能力; T ( t ) T(t) T(t)反映的是射线上从 t n t_n tn t t t的累积透射率。tn和tf首先确定了nerf的边界,而不至于学习到无穷远;其次避免了光心到近景范围内无效采样
直观上理解σ,可以解释为每个三维点吸收光线的能力,光经过该点,一部分被吸收,一部分透射,光的强度(可以理解为 T ( t ) T(t) T(t)) 在逐渐减小,当光强为0时,后面的三维点即便可以吸收颜色,也不会对像素颜色有贡献。指数函数保证了随着σ的累积,光的强度从1逐渐减为0。

体渲染离散化

其实就是函数离散化的形式,将tn到tf拆分成N个均匀的分布空间,从每个区间中随机选取一个样本ti:

t i ∼ U [ t n + i − 1 N ( t f − t n ) , t n + i N ( t f − t n ) ] i 从1到N t_i \sim \mathcal{U}\left[t_n+\frac{i-1}{N}\left(t_f-t_n\right), t_n+\frac{i}{N}\left(t_f-t_n\right)\right] \quad i \text{ 从1到N} tiU[tn+Ni1(tftn),tn+Ni(tftn)]i 1N

然后将连续体渲染公式离散化:

C ^ ( r ) = ∑ i = 1 N T i ( 1 − exp ⁡ ( − σ i δ i ) ) c i where  T i = exp ⁡ ( − ∑ j = 1 i − 1 σ j δ j ) (2) \hat{C}(\mathbf{r})=\sum_{i=1}^N T_i\left(1-\exp \left(-\sigma_i \delta_i\right)\right) \mathbf{c}_i \quad \tag 2 \\ \text{where } T_i=\exp \left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right) C^(r)=i=1NTi(1exp(σiδi))ciwhere Ti=exp(j=1i1σjδj)(2)
where T i = exp ⁡ ( − ∑ j = 1 i − 1 σ j δ j ) T_i=\exp \left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right) Ti=exp(j=1i1σjδj)
其中, δ i = t i + 1 − t i \delta_i=t_{i+1}-t_i δi=ti+1ti 表示相邻采样点之间的距离

在这里插入图片描述
但均匀采样有明显的问题, 比如体密度较大的点如果在两个采样点之间,那么永远不可能采样到。从上图中可看出,左半张代表均匀采样,右半张代表真实分布,左边由于表面两侧被采样到,只能反应这个区间内可能存在表面,但估计的σ不一定准确。
作者提出了分层采样来试图解决这个问题。

方法

位置编码

在这里插入图片描述
网络结构由如上图所示全连接网络组成,输入x,d分别分三维点的空间位置和视线方向。该三维点的体密度只与空间位置相关,颜色还和视角相关

γ ( p ) = ( sin ⁡ ( 2 0 π p ) , cos ⁡ ( 2 0 π p ) , ⋯ , sin ⁡ ( 2 L − 1 π p ) , cos ⁡ ( 2 L − 1 π p ) ) \gamma(p)=\left(\sin \left(2^0 \pi p\right), \cos \left(2^0 \pi p\right), \cdots, \sin \left(2^{L-1} \pi p\right), \cos \left(2^{L-1} \pi p\right)\right) γ(p)=(sin(20πp),cos(20πp),,sin(2L1πp),cos(2L1πp))

还可以注意到γ(x)和γ(d)分别是对位置坐标和方向坐标的位置编码(标准正余弦位置编码),这是由于单纯坐标只能体现低频信息,位置编码可以有效的区分开两个距离很近的坐标(即低频接近但高频编码分开【但或许也有问题,离得特别近的两个点或许低频信息也不相似,私以为mipnerf考虑三维点邻域的区间,在一定程度上可以缓解】),从而帮助网络学习到高频几何和纹理细节。如下图所示,视角信息有效反应高光信息,位置编码有助于恢复高频细节。
在这里插入图片描述

分层采样

除了上述提到的均匀采样可能导致i真实表面难以正好采样到,还有均匀采样带来了很多无意义空间的无效采样,简单来说,只有空气的地方没必要进行采样,或者被遮挡区域(可见性问题,不可见区域也没必要采样,需要提前判断累积透射率是否为降为0)。
在这里插入图片描述

首先均匀采样可以得到crose color,wi可以理解为同条射线被采样的 N c N_c Nc个三维点颜色的权重:
C ^ c ( r ) = ∑ i = 1 N c w i c i , w i = T i ( 1 − exp ⁡ ( − σ i δ i ) ) \widehat{C}_c(\mathbf{r})=\sum_{i=1}^{N_c} w_i c_i, \quad w_i=T_i\left(1-\exp \left(-\sigma_i \delta_i\right)\right) C c(r)=i=1Ncwici,wi=Ti(1exp(σiδi))

根据均匀采样点的权重值归一化后按重要性重新采样得到新的 n f n_f nf个位置

w ^ i = w i / ∑ j = 1 N c w j \widehat{w}_i=w_i / \sum_{j=1}^{N_c} w_j w i=wi/j=1Ncwj

最后损失函数可以表示为:

L = ∑ r ∈ R [ ∥ C ^ c ( r ) − C ( r ) ∥ 2 2 + ∥ C ^ f ( r ) − C ( r ) ∥ 2 2 ] \mathcal{L}=\sum_{\mathbf{r} \in \mathcal{R}}\left[\left\|\widehat{C}_c(\mathbf{r})-C(\mathbf{r})\right\|_2^2+\left\|\widehat{C}_f(\mathbf{r})-C(\mathbf{r})\right\|_2^2\right] L=rR[ C c(r)C(r) 22+ C f(r)C(r) 22]

这里为什么选用两个网络来分别做粗糙采样和精细采样,参考大佬【
】。crose网络是用于均匀采样的,包含更多的是低频信息的查询,而fine网络用于重要性采样,适用于三维点高频细节的查询,两个网络起到了类似滤波器的作用。

「待做实验验证!!!Todo」

体渲染推导公式(1)到公式(2)

首先,光线通过区间 [ 0 , t + d t ) [0, t+d t) [0,t+dt) 的概率:
光线通过区间 [ 0 , t + d t ) [0, t+d t) [0,t+dt) 的概率:
T ( t + d t ) = T ( t ) ⋅ ( 1 − d t ⋅ σ ( t ) ) \begin{aligned} \mathcal{T}(t+d t) & =\mathcal{T}(t) \cdot(1-d t \cdot \sigma(t)) \end{aligned} T(t+dt)=T(t)(1dtσ(t))
可以得到
T ( t + d t ) − T ( t ) d t ≡ T ′ ( t ) = − T ( t ) ⋅ σ ( t ) \begin{aligned} \frac{\mathcal{T}(t+d t)-\mathcal{T}(t)}{d t} & \equiv \mathcal{T}^{\prime}(t)=-\mathcal{T}(t) \cdot \sigma(t) \end{aligned} dtT(t+dt)T(t)T(t)=T(t)σ(t)
1 − T ( t ) 1-\mathcal{T}(t) 1T(t) 为光线在区间 [ 0 , t ) [0, t) [0,t) 被终止的累积分布函数(CDF);
T ( t ) σ ( t ) \mathcal{T}(t) \sigma(t) T(t)σ(t) 为其对应的概率密度函数 (PDF)

其中, T ( t ) \mathcal{T}(t) T(t) 为光线通过区间 [ 0 , t ) [0, t) [0,t) 透射率,也就是没被终止的概率,从1->0; σ ( t ) \sigma(t) σ(t) 为体密度函数; d t ⋅ σ ( t ) d t \cdot \sigma(t) dtσ(t) 为光线在 [ t , t + d t ) [t, t+d t) [t,t+dt) 区间被吸收的概率,也就是被终止概率。
T ′ ( t ) = − T ( t ) ⋅ σ ( t ) T ′ ( t ) T ( t ) = − σ ( t ) ∫ a b T ′ ( t ) T ( t ) d t = − ∫ a b σ ( t ) d t log ⁡ T ( t ) ∣ a b = − ∫ a b σ ( t ) d t T ( a → b ) ≡ T ( b ) T ( a ) = exp ⁡ ( − ∫ a b σ ( t ) d t ) \begin{aligned} \mathcal{T}^{\prime}(t) & =-\mathcal{T}(t) \cdot \sigma(t) \\ \frac{\mathcal{T}^{\prime}(t)}{\mathcal{T}(t)} & =-\sigma(t) \\ \int_a^b \frac{\mathcal{T}^{\prime}(t)}{\mathcal{T}(t)} d t & =-\int_a^b \sigma(t) d t \\ \left.\log \mathcal{T}(t)\right|_a ^b & =-\int_a^b \sigma(t) d t \\ \mathcal{T}(a \rightarrow b) \equiv \frac{\mathcal{T}(b)}{\mathcal{T}(a)} & =\exp \left(-\int_a^b \sigma(t) d t\right) \end{aligned} T(t)T(t)T(t)abT(t)T(t)dtlogT(t)abT(ab)T(a)T(b)=T(t)σ(t)=σ(t)=abσ(t)dt=abσ(t)dt=exp(abσ(t)dt)
T ( a → b ) \mathcal{T}(a \rightarrow b) T(ab) 表示光线通过 a a a b b b 区间没被终止的概率,假设 [ a , b ) [a,b) [a,b) 共享 a a a点体密度和颜色

C = ∫ 0 D T ( t ) ⋅ σ ( t ) ⋅ c ( t ) d t + T ( D ) ⋅ c b g C=\int_0^D \mathcal{T}(t) \cdot \sigma(t) \cdot \mathbf{c}(t) d t+\mathcal{T}(D) \cdot \mathbf{c}_{\mathrm{bg}} C=0DT(t)σ(t)c(t)dt+T(D)cbg
c b g c_{b g} cbg 表示背景色彩

C ( a → b ) = ∫ a b T ( a → t ) ⋅ σ ( t ) ⋅ c ( t ) d t = σ a ⋅ c a ∫ a b T ( a → t ) d t = σ a ⋅ c a ∫ a b exp ⁡ ( − ∫ a t σ ( u ) d u ) d t = σ a ⋅ c a ∫ a b exp ⁡ ( − σ a u ∣ a t ) d t = σ a ⋅ c a ∫ a b exp ⁡ ( − σ a ( t − a ) ) d t = σ a ⋅ c a ⋅ exp ⁡ ( − σ a ( t − a ) ) − σ a ∣ a b = c a ⋅ ( 1 − exp ⁡ ( − σ a ( b − a ) ) ) \begin{aligned} \boldsymbol{C}(a \rightarrow b) & =\int_a^b \mathcal{T}(a \rightarrow t) \cdot \sigma(t) \cdot \mathbf{c}(t) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \mathcal{T}(a \rightarrow t) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \exp \left(-\int_a^t \sigma(u) d u\right) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \exp \left(-\left.\sigma_a u\right|_a ^t\right) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \exp \left(-\sigma_a(t-a)\right) d t \\ & =\left.\sigma_a \cdot \mathbf{c}_a \cdot \frac{\exp \left(-\sigma_a(t-a)\right)}{-\sigma_a}\right|_a ^b \\ & =\mathbf{c}_a \cdot\left(1-\exp \left(-\sigma_a(b-a)\right)\right)\end{aligned} C(ab)=abT(at)σ(t)c(t)dt=σacaabT(at)dt=σacaabexp(atσ(u)du)dt=σacaabexp(σauat)dt=σacaabexp(σa(ta))dt=σacaσaexp(σa(ta)) ab=ca(1exp(σa(ba)))

T ( a → c ) = = exp ⁡ ( − [ ∫ a b σ ( t ) d t + ∫ b c σ ( t ) d t ] ) = exp ⁡ ( − ∫ a b σ ( t ) d t ) exp ⁡ ( − ∫ b c σ ( t ) d t ) = T ( a → b ) ⋅ T ( b → c ) \begin{aligned} \mathcal{T}(a \rightarrow c)= & =\exp \left(-\left[\int_a^b \sigma(t) d t+\int_b^c \sigma(t) d t\right]\right) \\ & =\exp \left(-\int_a^b \sigma(t) d t\right) \exp \left(-\int_b^c \sigma(t) d t\right) \\ & =\mathcal{T}(a \rightarrow b) \cdot \mathcal{T}(b \rightarrow c)\end{aligned} T(ac)==exp([abσ(t)dt+bcσ(t)dt])=exp(abσ(t)dt)exp(bcσ(t)dt)=T(ab)T(bc)

T n = T ( t n ) = T ( 0 → t n ) = exp ⁡ ( − ∫ 0 t n σ ( t ) d t ) = exp ⁡ ( ∑ k = 1 n − 1 − σ k δ k ) \mathcal{T}_n=\mathcal{T}\left(t_n\right)=\mathcal{T}\left(0 \rightarrow t_n\right)=\exp \left(-\int_0^{t_n} \sigma(t) d t\right)=\exp \left(\sum_{k=1}^{n-1}-\sigma_k \delta_k\right) Tn=T(tn)=T(0tn)=exp(0tnσ(t)dt)=exp(k=1n1σkδk)

C ( t N + 1 ) = ∑ n = 1 N ∫ t n t n + 1 T ( t ) ⋅ σ n ⋅ c n d t = ∑ n = 1 N ∫ t n t n + 1 T ( 0 → t n ) ⋅ T ( t n → t ) ⋅ σ n ⋅ c n d t = ∑ n = 1 N T ( 0 → t n ) ∫ t n t n + 1 T ( t n → t ) ⋅ σ n ⋅ c n d t = ∑ n = 1 N T ( 0 → t n ) ⋅ ( 1 − exp ⁡ ( − σ n ( t n + 1 − t n ) ) ) ⋅ c n \begin{aligned} \boldsymbol{C}\left(t_{N+1}\right) & =\sum_{n=1}^N \int_{t_n}^{t_{n+1}} \mathcal{T}(t) \cdot \sigma_n \cdot \mathbf{c}_n d t \\ & =\sum_{n=1}^N \int_{t_n}^{t_{n+1}} \mathcal{T}\left(0 \rightarrow t_n\right) \cdot \mathcal{T}\left(t_n \rightarrow t\right) \cdot \sigma_n \cdot \mathbf{c}_n d t \\ & =\sum_{n=1}^N \mathcal{T}\left(0 \rightarrow t_n\right) \int_{t_n}^{t_{n+1}} \mathcal{T}\left(t_n \rightarrow t\right) \cdot \sigma_n \cdot \mathbf{c}_n d t \\ & =\sum_{n=1}^N \mathcal{T}\left(0 \rightarrow t_n\right) \cdot\left(1-\exp \left(-\sigma_n\left(t_{n+1}-t_n\right)\right)\right) \cdot \mathbf{c}_n\end{aligned} C(tN+1)=n=1Ntntn+1T(t)σncndt=n=1Ntntn+1T(0tn)T(tnt)σncndt=n=1NT(0tn)tntn+1T(tnt)σncndt=n=1NT(0tn)(1exp(σn(tn+1tn)))cn

T ( 0 → t n ) ⋅ ( 1 − exp ⁡ ( − σ n ( t n + 1 − t n ) ) ) \mathcal{T}\left(0 \rightarrow t_n\right) \cdot\left(1-\exp \left(-\sigma_n\left(t_{n+1}-t_n\right)\right)\right) T(0tn)(1exp(σn(tn+1tn)))表示光线正好在 t N + 1 t_{N+1} tN+1位置的颜色的权重(**透射率*该点的颜色吸收率=该点颜色的贡献率,对应代码中的weights,代码中的 α \alpha α指代 1 − e x p ( − σ ∗ δ ) ∗ ∗ 1-exp(-\sigma*\delta)** 1exp(σδ)

C ( t N + 1 ) = ∑ n = 1 N T n ⋅ ( 1 − exp ⁡ ( − σ n δ n ) ) ⋅ c n , where T n = exp ⁡ ( ∑ k = 1 n − 1 − σ k δ k ) \boldsymbol{C}\left(t_{N+1}\right)=\sum_{n=1}^N \mathcal{T}_n \cdot\left(1-\exp \left(-\sigma_n \delta_n\right)\right) \cdot \mathbf{c}_n, \quad \\ \text{where} \quad \mathcal{T}_n=\exp \left(\sum_{k=1}^{n-1}-\sigma_k \delta_k\right) C(tN+1)=n=1NTn(1exp(σnδn))cn,whereTn=exp(k=1n1σkδk)

部分代码解读

相机变换(重要!)
  • 关于nerf相机方向的解读

  • 关于llff格式数据使用的NDC空间解读
    简单来说就是针对不同种类的数据在不同的空间进行计算,如360度合成数据lego(直接从相机坐标系变换到世界坐标系下)或者无界数据llff(NDC空间能将近远景范围限制在0-1之间)

Mip-Nerf

To do

Instant-NGP

To do

这篇关于【论文阅读笔记】NeRF+Mip-NeRF+Instant-NGP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479670

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓